
11/20/13	

1	

Horizontal Notation for Sequences	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	
b 	

0 h k	

 	

h h+1	

(h+1) – h = 1	

 	
b <= sorted >=	

0 k len(b)	

Generalizing Pre- and Postconditions	

•  Dutch national flag: tri-color 	

§  Sequence of 0..n-1 of red, white, blue "pixels"	

§  Arrange to put reds first, then whites, then blues 	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

Make the red, white, blue
sections initially empty: 	

•  Range i..i-1 has 0 elements	

•  Main reason for this trick	

Changing loop variables turns
invariant into postcondition.	

	

	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	
 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

(values in k..j-1 ���
 are unknown)	

>= 0	

0 k j n	

inv: b	
 ?	
 >= 0	
< 0	

pre: j = 0	

post: j = n	

pre: k = 0, ���
 j = n	

post: k = j	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h i k	

 1 2 3 1 3 4 5 6 8	
b	

h i k	

or	

•  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1 	

Partition Algorithm Implementation	

def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

1 2 1 3 0 5 6 3 8	

h i j k	

1 2 1 0 3 5 6 3 8	

h i j k	

11/20/13	

2	

Dutch National Flag Variant	

•  Sequence of integer values	

§  ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive	

§  Only rearrange part of the list, not all	

? 	

h k	

pre: b	

 < 0 = 0 > 0 	

h k	

post: b	

inv: b < 0 ? = 0 > 0	

h t i j k	

pre: t = h, ���
 i = k+1,	

 j = k	

post: t = i	

Final Exam: 	

Be prepared for variants	

Dutch National Flag Algorithm	

def dnf(b, h, k):
 """Returns: partition points as a tuple (i,j)"""
 t = h; i = k+1, j = k;
 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1; j = j-1
 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

Linear Search	

•  Vague: Find first occurrence of v in b[h..k-1].	

•  Better: Store an integer in i to truthify result condition post:	

	
post: 1. v is not in b[h..i-1]	

 	
 2. i = k OR v = b[i]	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

Linear Search	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

 v not here ? 	

h i k 	

 inv: b	

Linear Search	

def linear_search(b,c,h):
 """Returns: first occurrence of c in b[h..]"""
 # Store in i the index of the first c in b[h..]
 i = h

 # invariant: c is not in b[0..i-1]
 while i < len(b) and b[i] != c:
 i = i + 1

 # post: b[i] == c and c is not in b[h..i-1]
 return i if i < len(b) else -1

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

b c is not here	
 c
h i n

result (post)	

b c is not here	

h i n

invariant (inv)	

c is in here	

b[i] == c

Binary Search	

• Vague: Look for v in sorted sequence segment b[h..k].	

• Better:	

§ Precondition: b[h..k-1] is sorted (in ascending order). 	

§ Postcondition: b[h..i] <= v and v < b[i+1..k-1] 	
	

• Below, the array is in non-descending order:	

? 	

h k	

pre: b	

<= v	

h i k	

post: b	

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half	

> v	

< v	

h i j k	

inv: b	
 > v	
?	

