Lecture 22

Loop Invariants

Announcements for This Lecture

Assignment Survey The Verdict
 How much completed? e This looks okay, actually
= 82% finished B = Part D is half-way(ish)

" 68% finished C * Wanted time to be ~15 hrs

* 50% finished D » Not making big changes

" 36% finished E = But Part IT is less points

" 4% completed it all = Can get B+/A- w/o Part 11
* How much time? = But finish all Part I!

= 52% spent < 8 hours e A6 will go out on time

= 78% spent < 12 hours = Also about ~15 hours

11/14/13 Loop Invariants

Exam Info

» Today, 7:30-9:00PM

Last name A — G 1n Olin 155
[Last name H — K 1in Olin 165
[LLast name LL — R in Olin 255

Last name S — Z in Upson B17

= Extra-time Students: Upson 5130 at 6:30 pm
e Makeup: Friday, 6:30-8pm in Upson 5130

* Only 1f you have contacted me for permission

 Exams will be graded over the weekend

11/14/13

Loop Invariants

Some Important Terminology

assertion: true-false statement placed in a program to
assert that it 1s true at that point

= (Can either be a comment, or an assert command
precondition: assertion placed before a statement
= Same idea as function precondition, but more general

postcondition: assertion placed after a statement

loop invariant: assertion supposed to be true before
and after each iteration of the loop
= Distinct from attribute invariant

iteration of a loop: one execution of its body

11/14/13 Loop Invariants

Some Important Terminology

assertion: true-false statement placed in a program to
assert that it 1s true at that point

= (Can either be a comment, or an assert co

an. €ach iteration of the loop
= Distinct from attribute invariant

iteration of a loop: one execution of its body

11/14/13 Loop Invariants

Assertions versus Asserts

e Assertions prevent bugs # x 1s the sum of 1..n
= Help you keep track of
what you are doing Comment form }
The root of the assertion.
* Also track down bugs | of all bugs! }
= Make it easier to check
belief/code mismatches x| ! n I
* The assert statement 1s N N
a (type of) assertion
* One you are enforcing <9 a0

= Cannot always convert a
comment to an assert

11/14/13 Loop Invariants

Preconditions & Postconditions

n
precondition 12345678
J/ |
#x =sum of 1..n-1 X contains the sum of these (6)
X=X+n
n=n+1l
#x= sumof 1.0-1 n
N
postcondition 123456738

e Precondition: assertion x contains the sum of these (10)

placed betfore a segment Relationship Between Two
* Postcondition: assertion If precondition is true, then
placed after a segment postcondition will be true

11/14/13 Loop Invariants

Solving a Problem

precondition
J/
#x = sumot L.n What statement do you
n=n+1 put here to make the
#x= sum of L.n postcondition true?
N
postcondition
Arx=x + 1
B:x=X +n
C:x=x + n+l

D: None of the above
E: I don’t know

11/14/13 Loop Invariants

Solving a Problem

precondition
J/
#x = sumot L.n What statement do you
n=n+1 put here to make the
#x= sum of L.n postcondition true?
\\
postcondition
A:x=x + 1
B:Xx= X + n jR _— | f}
emember the new value of n
Cix=Xx + n+tl ——

D: None of the above
E: I don’t know

11/14/13 Loop Invariants

Invariants: Assertions That Do Not Change

 Loop Invariant: an assertion that 1s true before and
after each iteration (execution of repetend)
x=0;i=2
while i <= &:
X=X+1i*i
i=1+1

1=2

invariant

x = sum of squares of 2..5
true
@ X = X + 1%1
Invariant:
false \l'

1=1+1

x = sum of squares of 2..1-1

in terms of the range of integers

Invariants: Assertions That Do Not Change

x=0;i=2 x |0
Inv: x = sum of squares of 2..i-1 o [9
while i <= 5:
X=X+1i%i
1=1+1 =2
<

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed:

true
Range 2..1-1: X=X +1%
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x |0
Inv: x = sum of squares of 2..i-1

, : i 2
while i <= 5;

X=X+1i*i

i=i+] 1=2

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed:

true
Range 2..1-1: 2..1 (empty) X =X + 1*1
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;1=23 x N 4
Inv: x = sum of squares of 2..i-1

o ! i XX 3
while i <= 5;

X=X+1i*i

i=i+] 1=

Al o

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed: 2

true
Range 2..1-1: 2.2 X=X +1%
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x N X 13
Inv: x = sum of squares of 2..i-1 ,
1 4
while i <= 5: XX X
X=X+i*
i=1+1 1=

Al o

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed: 2, 3

true
Range 2..1-1: 2.3 X=X +1%
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x N X KB 29
Inv: x = sum of squares of 2..i-1 ,

G i XX X X 5
while i <= b:

X=X+1i*i

i=i+] 1=

Al o

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed: 2, 3, 4

true
Range 2..1-1: 2.4 X=X +1%
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x N X KB X% 54
Inv: x = sum of squares of 2..i-1 ,

Lo i XXX X X 6
while i <= b:

X=X+1i*i

i=i+] 1=

Al o

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed: 2, 3, 4, 5

true
Range 2..1-1: 2.5 X =X+1%
false \l'

1=14+1 [~

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x N X KB X% 54
Inv: x = sum of squares of 2..i-1 ,

Lo i XXX X X 6
while i <= b:
X=X+1i*i
i=i+] 1=

Al o

Post: x = sum of squares of 2..5
invariant

Integers that have

been processed: 2, 3, 4, 5

true
Range 2..1-1: 2.5 X =X + 11
false \l'

1=14+1 [~

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2..5

Designing Integer while-loops

Process integers in a..b

inv: integers in a..k-1 have been processed

k=a

while k <=h:

process integer k
k=k+1

post: integers in a..b have been processed

invariant
\ 4 varia @ ruc_| Pprocess k

11/14/13

1nit

Command to do something

Equivalent postcondition

Ivariant

false

Loop Invariants

k=K +1;

18

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN U & W N =

Implement the repetend (process k)

11/14/13 Loop Invariants

19

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN U & W N =

Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed

11/14/13 Loop Invariants

20

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN U & W N =

Implement the repetend (process k)

Process b..c

while k <=¢:

k=k+1

Postcondition: range b..c has been processed

11/14/13 Loop Invariants

21

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN U & W N =

Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed
while k <= c:

k=k+1

Postcondition: range b..c has been processed

11/14/13 Loop Invariants

22

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN U & W N =

Implement the repetend (process k)

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b..k-1 has been processed
while k <=c¢:
Process k
k=k+1
Postcondition: range b..c has been processed

11/14/13 Loop Invariants

23

Finding an Invariant

Command to do something

7
Make b True if no int in 2..n-1 divides n, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition

What 1s the invariant?

11/14/13 Loop Invariants 24

Finding an Invariant

Command to do something

7
Make b True if no int in 2..n-1 divides n, False otherwise

while k < n:
Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition
What 1s the invariant?

11/14/13 Loop Invariants 25

Finding an Invariant

Command to do something

7
Make b True if no int in 2..n-1 divides n, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition
What is the invariant? 123 ... k-1kk+1...n

11/14/13 Loop Invariants 26

Finding an Invariant

Command to do something

7
Make b True if no int in 2..n-1 divides n, False otherwise

b = True
k=2
invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k <n:
Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition
What is the invariant? 123 ... k-1kk+1...n

11/14/13 Loop Invariants 27

Finding an Invariant

Command to do something

7
Make b True if no int in 2..n-1 divides n, False otherwise

b = True
k=2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:
Process k;
ifn%k==0:
b = False
k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition
What is the invariant? 123 ... k-1kk+1...n

11/14/13 Loop Invariants 28

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something

for s = 'ebeee', x =2

while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0.k

B: 1.k
C:0.k-1

D: 1.k-1

E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something

for s = 'ebeee', x =2

while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]
B: 1.k B: x =no. adj. equal pairs in s[0. k]
C:10..k-1 C: x = no. adj. equal pairs in s[1..k—1]
D: 1.k-1 D: x = no. adj. equal pairs 1n s[0..k—1]
E: I don’t know E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something

for s = 'ebeee', x =2
inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]
B: 1.k B: x =no. adj. equal pairs in s[0. k]
C:10..k-1 C: x = no. adj. equal pairs in s[1..k—1]
D: 1.k-1 D:x = no. adj. equal pairs 1n s[0..k—1]
E: I don’t know E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something
x=0
for s = 'ebeee’, x = 2
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
Process k

k=k+1
x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
What is initialization for k?

A: k=0
B: k=1
C:k=-1

D: Idon’t know

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something
x=0

k=1

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

for s = 'ebeee', x =2

Process k

k=K+]1 . -~
x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition
k: next integer to process.
What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
B:lk =1 B: s[k-1] and s[k]
C:k=-1 C: s[k-1] and s[k+1]
D: I don’t know D: s[k] and s[n]

E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s[0..len(s)-1] Command to do something
x=0
k=1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
Process k
x=x+ 1if (s[k-1] == s[k]) else O
k=k+1
x = # adjacent equal pairs in s[0..len(s)-1]

for s = 'ebeee', x =2

Equivalent postcondition

k: next integer to process.

What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
B:lk =1 B:ls[k-1] and s[k]
C:k=-1 C: s[k-1] and s[k+1]
D: I don’t know D: s[k] and s[n]
E: I don’t know

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?
Set ¢ to largest element in 8
c=%?? Command to do something
k=199
inv:
while k < len(s):
Process k
k=k+1
c¢ = largest char in s[0..len(s)—1]

Equivalent postcondition

11/14/13 Loop Invariants 35

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?
Set ¢ to largest element in 8
c=%?? Command to do something
k=199
inv: c is largest element in s[0..k—1]
while k < len(s):

Process k

k=k+1
c¢ = largest char in s[0..len(s)—1]

Equivalent postcondition

11/14/13 Loop Invariants 36

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?

Set ¢ to largest element in 8 o
2. How do we initialize ¢ and k?

c=%?? Command to do something

k=7 A: k=0; ¢ = s[0]

inv: c is largest element in s[0..k—1]

while k < len(s): B: k=1 ¢=s[0]
Process k C: k=1; c=¢[1]

k=k+1

D: k=0; ¢=g[1]
c¢ = largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

11/14/13 Loop Invariants 37

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?

Set ¢ to largest element in 8 o
2. How do we initialize ¢ and k?

c=%?? Command to do something
=99
K= A: k=0; ¢ = s[0]
inv: c is largest element in s[0..k—1]
while k < len(s): B:{k=1; c=s[0]
Process k C: k=1; c=¢[1]

k=k+1

. D: k=0; ¢=s8[l]
c¢ = largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k—1 1s not empty. You must start with k = 1.

11/14/13 Loop Invariants 38

