
While Loops	

Lecture 21 	
	

Announcements for This Lecture	

Assignments	
 Prelim 2	

•  Thursday, 7:30-9pm	

§  A–G (Olin 155)	

§  H–K (Olin 165)	

§  L–R (Olin 255)	

§  S–Z (Upson B17)	

§  Extra-time (Upson 5130)	

•  Make-up is Friday	

§  6:30-8pm in Upson 5130	

§  Only if submitted conflict	

11/15/13	
 2	
While-Loops	

•  A5 due next Tuesday	

§  Should be done with Part I	

§  Do Part II this weekend	

•  Fill out the Progress Survey	

§  Tell us how far you got	

§  Tell us hours worked	

§  Submit by Wed. night	

§  Will use to adjust Part II	

•  A6 will be posted next week	

Recall: For Loops	

Print contents of seq�
x = seq[0]�
print x�
x = seq[1]�
print x�
…�
x = seq[len(seq)-1]�
print x

 The for-loop:	

 for x in seq:�
 print x

•  Key Concepts	

§  loop sequence: seq
§  loop variable: x
§  body: print x
§ Also called repetend	

11/15/13	
 While-Loops	
 3	

for-loops: Beyond Sequences	

•  Work on iterable objects	

§  Object with an ordered

collection of data	

§  This includes sequences	

§  But also much more	

•  Examples:	

§  Text Files (built-in)	

§  Web pages (urllib2)	

•  2110: learn to design
custom iterable objects 	

def blanklines(fname):
 """Return: # blank lines in file fname
 Precondition: fname is a string"""
 # open makes a file object
 file = open('myfile.txt')

 # Accumulator
 count = 0
 for line in file: # line is a string
 if len(line) == 0: # line is blank
 count = count+1

 f.close() # close file when done
 return count

11/15/13	
 While-Loops	
 4	

Important Concept in CS:���
Doing Things Repeatedly	

1.  Process each item in a sequence	

§  Compute aggregate statistics for a dataset, ���

such as the mean, median, standard deviation, etc.	

§  Send everyone in a Facebook group an appointment time	

2.  Perform n trials or get n samples.	

§  A4: draw a triangle six times to make a hexagon	

§  Run a protein-folding simulation for 106 time steps	

3.  Do something an unknown  
number of times	

§  CUAUV team, vehicle keeps ���

moving until reached its goal 
	
11/15/13	
 While-Loops	
 5	

 for x in sequence:
 process x

 for x in range(n):
 do next thing

????

Beyond Sequences: The while-loop

while <condition>:
 statement 1
 …
 statement n

	

•  Relationship to for-loop

§  Broader notion of
“still stuff to do”

§  Must explicitly ensure
condition becomes false	

§  You explicitly manage
what changes per iteration	

11/15/13	
 While-Loops	
 6	

condition	

true	

false	

repetend	

repetend or body	

While-Loops and Flow	

print 'Before while'
count = 0
i = 0
while i < 3:
 print 'Start loop '+str(i)

count = count + i
i = i + 1
print 'End loop '

print 'After while'

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while
	

	

11/15/13	
 While-Loops	
 7	

while Versus for

 # process range b..c-1
 for k in range(b,c)
 process k

 # process range b..c-1
 k = b
 while k < c:
 process k
 k = k+1

Must remember to increment	

 # process range b..c
 for k in range(b,c+1)
 process k

 # process range b..c
 k = b
 while k <= c:
 process k
 k = k+1

11/15/13	
 While-Loops	
 8	

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	
Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	
 	
Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	
 	
Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	
 	
Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

11/15/13	
 While-Loops	
 9	

A: nothing	

B: 2,1	

C: 1	

D: 2	

E: something else	

What does 2..1 contain?	

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	
Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	
 	
Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	
 	
Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	
 	
Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

•  The notation m..n, always implies that m <= n+1	

§  So you can assume that even if we do not say it	

§  If m = n+1, the range has 0 values	

11/15/13	
 While-Loops	
 10	

while Versus for

 # incr seq elements
 for k in range(len(seq)):
 seq[k] = seq[k]+1

 # incr seq elements
 k = 0
 while k < len(seq):
 seq[k] = seq[k]+1
 k = k+1

11/15/13	
 While-Loops	
 11	

while is more flexible, but
requires more code to use	

Makes a second list.	

Patterns for Processing Integers	

range a..b-1	

i = a
while i < b:
 process integer I	

 i = i + 1	

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):
 if s[i] == '/':
 count= count + 1
 i= i +1
count is # of '/'s in s[0..s.length()-1]

range c..d	

i= c
while i <= d:
 process integer I	

 i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 0
while i <= n:
 v = v + 1.0 / i
 i= i +1
v= 1/1 + 1/2 + …+ 1/n

11/15/13	
 While-Loops	
 12	

while Versus for

 # table of squares to N
 seq = []
 n = floor(sqrt(N)) + 1
 for k in range(n):
 seq.append(k*k)

 # table of squares to N
 seq = []
 k = 0
 while k*k < N:
 seq.append(k*k)
 k = k+1

A for-loop requires that ���
you know where to stop
the loop ahead of time 	

A while loop can use
complex expressions to
check if the loop is done	

11/15/13	
 While-Loops	
 13	

while Versus for

Table of n Fibonacci nums
fib = [1, 1]
for k in range(2,n):
 fib.append(fib[-1] + fib[-2])

Table of n Fibonacci nums
fib = [1, 1]
while len(fib) < n:
 fib.append(fib[-1] + fib[-2])

Sometimes you do not use ���
the loop variable at all	

Do not need to have a loop	

variable if you don’t need one	

Fibonacci numbers:	

	
F0 = 1	

	
F1 = 1	

	
Fn = Fn–1 + Fn–2	

11/15/13	
 While-Loops	
 14	

Cases to Use while

Remove all 3's from list t
i = 0

while i < len(t):
 # no 3’s in t[0..i–1]
 if t[i] == 3:
 del t[i]
 else:
 i += 1

 # Remove all 3's from list t
 while 3 in t:
 t.remove(3)

11/15/13	
 While-Loops	
 15	

Great for when you must modify the loop variable	

Cases to Use while

Remove all 3's from list t
i = 0

while i < len(t):
 # no 3’s in t[0..i–1]
 if t[i] == 3:
 del t[i]
 else:
 i += 1

 # Remove all 3's from list t
 while 3 in t:
 t.remove(3)

11/15/13	
 While-Loops	
 16	

Great for when you must modify the loop variable	

Stopping
point keeps
changing.	

The stopping condition is not
a numerical counter this time.	

Simplifies code a lot.	

Cases to Use while	

•  Want square root of c	

§  Make poly f(x) = x2-c 	

§  Want root of the poly���

(x such that f(x) is 0)	

•  Use Newton’s Method	

§  x0 = GUESS (c/2??)	

§  xn+1 = xn – f(xn)/f'(xn)	

 = xn – (xnxn-c)/(2xn)	

 = xn – xn/2 + c/2xn	

 = xn/2 + c/2xn	

§  Stop when xn good enough	

	

def sqrt(c):
 """Return: square root of c
 Uses Newton’s method
 Pre: c >= 0 (int or float)"""
 x = c/2
 # Check for convergence
 while abs(x*x – c) > 1e-6:
 # Get xn+1 from xn
 x = x / 2 + c / (2*x)

 return x

11/15/13	
 While-Loops	
 17	

Cases to Use while	

•  Want square root of c	

§  Make poly f(x) = x2-c 	

§  Want root of the poly���

(x such that f(x) is 0)	

•  Use Newton’s Method	

§  x0 = GUESS (c/2??)	

§  xn+1 = xn – f(xn)/f'(xn)	

 = xn – (xnxn-c)/(2xn)	

 = xn – xn/2 + c/2xn	

 = xn/2 + c/2xn	

§  Stop when xn good enough	

	

def sqrt(c):
 """Return: square root of c
 Uses Newton’s method
 Pre: c >= 0 (int or float)"""
 x = c/2
 # Check for convergence
 while abs(x*x – c) > 1e-6:
 # Get xn+1 from xn
 x = x / 2 + c / (2*x)

 return x

11/15/13	
 While-Loops	
 18	

Part II of A5 uses a similar idea.	

