for-loops: Beyond Sequences

- Work on iterable objects
- Object with an ordered collection of data
- This includes sequences
- But also much more
- Examples:
- Text Files (built-in)
- Web pages (urllib\%)
- 2110: learn to design custom iterable objects
def blanklines(fname):
""Return: \# blank lines in file fname
Precondition: fname is a string"'"
\# open makes a file object file = open('myfile.ttt')
\# Accumulator
count $=0$
for line in file: \# line is a string if len(line) $==0$: \# line is blank | count = count+1
f.close() \# close file when done return count

Important Concept in CS: Doing Things Repeatedly

1. Process each item in a sequence

- Compute aggregate statistics fo for x in sequence: such as the mean, median, stan process x
- Send everyone in a Facebook group air appomment unte

2. Perform n trials or get n samples.

- A4: draw a triangle six times to n for x in range(n):
- Run a protein-folding simuram do next thing

3. Do something an unknown number of times
CUAUV ???? moving until reached its goal

While-Loops and Flow

print 'Before while'	Output:
count = 0	Before while
$\mathrm{i}=0$	Start loop 0
while i < 3:	End loop
print 'Start loop '+str(i)	Start loop 1
count = count + i	End loop
$\mathrm{i}=\mathrm{i}+1$	Start loop 2
print 'End loop '	End loop
print 'After while'	After while

while Versus for	
\# process range b..c-1 for k in range(b,c) process k	$\begin{aligned} & \text { \# process range b..c-1 } \\ & \mathrm{k}=\mathrm{b} \\ & \text { while } \mathrm{k}<\mathrm{c} \text { : } \end{aligned}$
Must remember to increment $\triangle \mathrm{k}=\mathrm{k}+\mathrm{l}$	
\# process range b..c for k in range(b,c+l) process k	$\begin{aligned} & \text { \# process range b..c } \\ & \mathrm{k}=\mathrm{b} \\ & \text { while } \mathrm{k}<=\mathrm{c} \text { : } \\ & \quad \text { process } \mathrm{k} \\ & \mathrm{k}=\mathrm{k}+1 \end{aligned}$

Note on Ranges

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$ Contains $5+1-2=4$ values
- $2 . .4$ contains $2,3,4$. Contains $4+1-2=3$ values
- $2 . .3$ contains 2,3 Contains $3+1-2=2$ values
- 2.2 contains 2 . Contains $2+1-2=1$ values
- $2 . .1$ contains ???
- The notation m..n, always implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $\mathrm{m}=\mathrm{n}+1$, the range has 0 values

