Lecture 17

Using Classes Effectively

Important!

YES NO
class Point(object): class Point:

"""Instances are 38D points """Instances are 38D points
Attributes: Attributes:

X: x-coord [float] X: x-coord [float]

y: y-coord [float] y: y-coord [float]

z: Zz-coord [float]""" z:. Zz-coord [float]"""

3.0-Style Classes “Old-Style” Classes
Well-Designed Very, Very Bad

10/29/12 Using Classes Effectively

Designing Types From first
5 s 1YP day of class!

. _I/
e Type: set of values and the operations on them

" Int: (set: integers; ops: +,—, *,/, ...)
= Time (set: times of day; ops: time span, before/after, ...)
= Worker (set: all possible workers; ops: hire pay,promote,...)
= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)
* To define a class, think of a real type you want to make
= Python gives you the tools, but does not do it for you
= Physically, any object can take on any value

= Discipline 1s required to get what you want

10/29/12 Using Classes Effectively

Making a Class into a Type

1. Think about what values you want in the set
* What attributes? What values can they have?

2. Think about what operations you want
= Often influences the previous question

* To make (1) precise: write a class invariant

= Statement we promise to keep true after every method call

 To make (2) precise: write method specifications

= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

10/29/12 Using Classes Effectively 4

Planning out a Class

class Time(object):

"""Tnstances represent times of day. Class Invariant
Instance Attributes: o States what attributes are present
hour: hour of day [int in 0..83] and what values they can have.
min: minute of hour [int in 0..59]"™" :
A statement that will always be
def _init_ (self, hour, min): true of any Time instance.

nuuThe tlme hourzmin,
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins): Method Specification

"""Move this time <hours> hours
and <mins> minutes into the future. } States what the method does.

Pre: hours is int >= 0; mins in 0..59"" Gives preconditions stating what

is assumed true of the arguments.

def isPM(self):
""Returns: this time is noon or later.""

Planning out a Class

class Rectangle(object):

"""Instances represent rectangular
regions of the plane.

Instance Attributes: 1 | Class Invariant
t: y coordinate of top edge [float] States what attributes are present
I: X coordinate of left edge [float] | and what values th h
b: y coordinate of bottom edge [float] and what vatues they can have.
r: X coordinate of right edge [float] A statement that will always be
For all Rectangles, | <=rand b <=t."" _J | true of any Rectangle instance.

def __init_ (self, t, 1, b, r):
"""The rectangle [l, r] x [t, b]

Pre: args are floats; 1 <=r; b <=t"""

Method Specification

States what th thod does.
"""Return: area of the rectangle.""" ates What the method ¢oes

def area(self): }

Gives preconditions stating what
def intersection(self, other): is assumed true of the arguments.

"""Return: new Rectangle describing
intersection of self with other."""

Planning out a Class

class Hand(object):
"""Instances represent a hand in cards.
Instance Attributes:
cards: cards in the hand [list of card]

This list is sorted according to the
ordering defined by the Card class."""

def __init__ (self, deck, n):

"""Draw a hand of n cards.
Pre: deck is a list of >=n cards""

def isFullHouse(self):

"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card.""

¥

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what
is assumed true of the arguments.

10/29/12 Using Classes Effectively

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)

* When implementing methods:
1. Assume preconditions are true
2. Assume class invariant 1s true to start
3. Ensure method specification is fulfilled

4. Ensure class invariant 1s true when done
e Later, when using the class:

* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant is true

10/29/12 Using Classes Effectively 8

Implementing an Initializer

def __init_ (self, hour, min):
unnThe tlme hour:min,
Pre: hour in 0..23; min in 0..59"""

self.hour = hour
self.min = min

TN

Instance variables:
hour: hour of day

10/29/12

[int in 0..23]
min: minute of hour [int in 0..59]

Using Classes Effectively

l— This is true to start

You put code here

This should be true
at the end

Implementing a Method

— —

Instance variables:
hour: hour of day [int in 0..23]

min: minute of hour [int in 0..59] This 1s true to start

BN What we are supposed
def inecrement(self, hours, mins): / to accomplish

"""Move this time <hours> hours
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59"™ h This 1s also true to start

self. min = self.min + min
self.hour = (self.hour + hour +

self.min / 60)
self. min = self.min % 60 You put code here
self.hour = self.hour % 24

~ -

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

This should be true
at the end 10

Role of Invariants and Preconditions

They both serve two purposes

= Help you think through your
plans in a disciplined way

= Communicate to the user® how
they are allowed to use the class

Provide the interface of the class

" interface btw two programmers

= 1nterface btw parts of an app

e Important concept for making
large software systems

= Will return to this idea in a week

* ...who might well be you!

inetereface l'intor;fasl noun

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.

* chiefly Physics a surface forming a
common boundary between two
portions of matter or space, €.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.

2. Computing a device or program
enabling a user to communicate with a
computer.

* adevice or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.

— The Oxford American Dictionary

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)

* When 1mplement1ng methods:
1.

s Later, when using the class:
* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant is true

10/29/12 Using Classes Effectively 12

Recall: Enforce Preconditions with assert

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 <n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
a,ssert[O <nandn< IOOOOOO] [str(n)+' is out of range']
Implement od here...

Check (part of)
the precondition

[(Optional) Error message

g when precondition violated

10/29/12 Using Classes Effectively 13

Enforce Method Preconditions with assert

class Time(object): Instance Attributes:
"""Instances represent times of day.""" hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..3; min in 0..59"™

assert type(hour) == int 7] | Initializer creates/initializes all
assert 0 <= hour and hour < 24 of the instance attributes.

assert type(min) == int Asserts in initializer guarantee the
assert 0 <= min and min < 60 J | initial values satisfy the invariant.

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int Asserts in other methods enforce
assert hour >= 0 and the method preconditions.
assert 0 <= min and min < 60

—

What About Attributes?

class Time(object):

¢ User can access lnStance "R atances I’epI’eSent times of day

attributes via assignment Instance Attributes:
hour: hour of day [int in 0..23]
¢ Example: min: minute of hour [int in 0..59]"™"
. Invariant
>>>t =
t = Time(,45) violation! | def __init__ (self, hour, min):
>>>t.min =70 """The time hour:min.
Pre: hour in 0..23; min in 0..59""”
* Nothing we can do assert type(hour) == int
, assert O <= hour and hour < 24
= Wrote methods assuming assert type(min) == int
invariant always true assert 0 <= min and min < 60
S
- Ou.r enforcement Cf)c.le 1S Only protects
all in method definitions inside initializer

10/29/12 Using Classes Effectively 15

Data Encapsulation

* Idea: Force the user to only use methods
* Do not allow direct access of attributes

Setter Method Getter Method

e Used to change an attribute Used to access an attribute

* Replaces all assignment e Replaces all usage of
statements to the attribute attribute in an expression
e Bad: e Bad:
>>> t.min = 55 >>>h = 60*t.min
* Good: Good:
>>> {.8etMin(55) >>> 1 = 60*t.getMin()

10/29/12 Using Classes Effectively 16

Data Encapsulation

class Time(object):
"""Tnstances represent times of day.
Instance Attributes:

hour: hour of day [int in 0..23]

Do this for all of
your attributes

%} min: minute of hour [int in 0..89]"""
def getMin(self):

""Returns: min attribute""

%} return self. min — G —

def setMin(self, mins):

Naming Convention

The underscore means
“should not access the
attribute directly.”

"""Alters min attribute to be mins
Pre: mins is in 0..59"""

assert type(mins) == int
assert 0 <= mins and mins < 60

Precondition is same
as attribute invariant.

self._min = mins

10/29/12 Using Classes Effectively

