
Using Classes Effectively	

Lecture 17 	
	

Important!	

YES	

 class Point(object):
 """Instances are 3D points
 Attributes:
 x: x-coord [float]
 y: y-coord [float]
 z: z-coord [float]"""
 …

NO	

class Point:
 """Instances are 3D points
 Attributes:
 x: x-coord [float]
 y: y-coord [float]
 z: z-coord [float]"""
 …	

“Old-Style” Classes	

Very, Very Bad	

3.0-Style Classes	

Well-Designed	

10/29/12	
 Using Classes Effectively	
 2	

•  Type: set of values and the operations on them	

§  int: (set: integers; ops: +, –, *, /, …)	

§  Time (set: times of day; ops: time span, before/after, …)	

§  Worker (set: all possible workers; ops: hire,pay,promote,…)	

§  Rectangle (set: all axis-aligned rectangles in 2D; ���

 ops: contains, intersect, …)	

•  To define a class, think of a real type you want to make	

§  Python gives you the tools, but does not do it for you	

§  Physically, any object can take on any value	

§  Discipline is required to get what you want	

Designing Types	
 From first ���
day of class!	

10/29/12	
 Using Classes Effectively	
 3	

Making a Class into a Type	

1.  Think about what values you want in the set	

§  What attributes? What values can they have?	

2.  Think about what operations you want	

§  Often influences the previous question	

•  To make (1) precise: write a class invariant	

§  Statement we promise to keep true after every method call	

•  To make (2) precise: write method specifications	

§  Statement of what method does/what it expects (preconditions)	

•  Write your code to make these statements true!	

10/29/12	
 Using Classes Effectively	
 4	

Planning out a Class	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""

 def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.
 Pre: hours is int >= 0; mins in 0..59"""

 def isPM(self):
 """Returns: this time is noon or later."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Time instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

5	

Planning out a Class	

class Rectangle(object):
 """Instances represent rectangular�
 regions of the plane.
 Instance Attributes:
 t: y coordinate of top edge [float]�
 l: x coordinate of left edge [float]�
 b: y coordinate of bottom edge [float] �
 r: x coordinate of right edge [float]
 For all Rectangles, l <= r and b <= t."""

 def __init__(self, t, l, b, r):
 """The rectangle [l, r] x [t, b]�
 Pre: args are floats; l <= r; b <= t"""

 def area(self):
 """Return: area of the rectangle."""

 def intersection(self, other):
 """Return: new Rectangle describing �
 intersection of self with other."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Rectangle instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

6	

Planning out a Class	

class Hand(object):
 """Instances represent a hand in cards.
 Instance Attributes:
 cards: cards in the hand [list of card]
 This list is sorted according to the�
 ordering defined by the Card class."""

 def __init__(self, deck, n):
 """Draw a hand of n cards.�
 Pre: deck is a list of >= n cards"""

 def isFullHouse(self):
 """Return: True if this hand is a full �
 house; False otherwise"""

 def discard(self, k):
 """Discard the k-th card."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Rectangle instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

10/29/12	
 Using Classes Effectively	
 7	

Implementing a Class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

1.  Assume preconditions are true	

2.  Assume class invariant is true to start	

3.  Ensure method specification is fulfilled	

4.  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

10/29/12	
 Using Classes Effectively	
 8	

Implementing an Initializer	

def __init__(self, hour, min):
"""The time hour:min.�
Pre: hour in 0..23; min in 0..59"""

You put code here	

This is true to start	

This should be true���
at the end	

self.hour = hour
self.min = min

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

10/29/12	
 Using Classes Effectively	
 9	

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

Implementing a Method	

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.�
Pre: hours [int] >= 0; mins in 0..59"""

You put code here	

This is also true to start	

This should be true���
at the end	

self.min = self.min + min
self.hour = (self.hour + hour +
 self.min / 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start	

What we are supposed���
to accomplish	

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

10	

Role of Invariants and Preconditions	

•  They both serve two purposes	

§  Help you think through your

plans in a disciplined way	

§  Communicate to the user* how

they are allowed to use the class	

•  Provide the interface of the class	

§  interface btw two programmers	

§  interface btw parts of an app	

•  Important concept for making
large software systems	

§  Will return to this idea in a week	

* …who might well be you!	

in•ter•face |ˈintərˌfās| noun	

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.	

• 	
chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.	

2. Computing a device or program
enabling a user to communicate with a
computer.	

• 	
a device or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.	

—The Oxford American Dictionary	

Implementing a Class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

1.  Assume preconditions are true	

2.  Assume class invariant is true to start	

3.  Ensure method specification is fulfilled	

4.  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

Easy(ish) if we are the user.	

But what if we aren’t?	

10/29/12	
 Using Classes Effectively	
 12	

Recall: Enforce Preconditions with assert

def anglicize(n):
 """Returns: the anglicization of int n.

�

 Precondition: n an int, 0 < n < 1,000,000"""
 assert type(n) == int, str(n)+' is not an int'
 assert 0 < n and n < 1000000, str(n)+' is out of range'

 # Implement method here…

	

	
	

Check (part of)���
the precondition	

(Optional) Error message ���
when precondition violated	

10/29/12	
 Using Classes Effectively	
 13	

Enforce Method Preconditions with assert
class Time(object):
 """Instances represent times of day."""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""
 assert type(hour) == int
 assert 0 <= hour and hour < 24
 assert type(min) == int
 assert 0 <= min and min < 60

 def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.
 Pre: hours is int >= 0; mins in 0..59""”
 assert type(hour) == int
 assert type (min) == int
 assert hour >= 0 and
 assert 0 <= min and min < 60

Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]

Initializer creates/initializes all ���
of the instance attributes.	

Asserts in initializer guarantee the
initial values satisfy the invariant.	

Asserts in other methods enforce
the method preconditions.	

What About Attributes?	

•  User can access instance
attributes via assignment	

•  Example:	

>>> t = Time(2,45)
>>> t.min = 70

•  Nothing we can do	

§  Wrote methods assuming

invariant always true	

§  Our enforcement code is

all in method definitions	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59""”
 assert type(hour) == int
 assert 0 <= hour and hour < 24
 assert type(min) == int
 assert 0 <= min and min < 60

Invariant
violation!	

Only protects
inside initializer	

10/29/12	
 Using Classes Effectively	
 15	

Data Encapsulation	

•  Idea: Force the user to only use methods	

•  Do not allow direct access of attributes	

Setter Method	

•  Used to change an attribute	

•  Replaces all assignment

statements to the attribute	

•  Bad:	

>>> t.min = 55
•  Good:	

>>> t.setMin(55)

Getter Method	

•  Used to access an attribute	

•  Replaces all usage of ���

attribute in an expression	

•  Bad:	

>>> h = 60*t.min
•  Good:	

>>> h = 60*t.getMin()
10/29/12	
 Using Classes Effectively	
 16	

Data Encapsulation	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def getMin(self):
 """Returns: min attribute"""
 return self._min

 def setMin(self, mins):
 """Alters min attribute to be mins
 Pre: mins is in 0..59"""
 assert type(mins) == int
 assert 0 <= mins and mins < 60
 self._min = mins

Getter	

Setter	

Precondition is same���
as attribute invariant.	

Naming Convention	

The underscore means ���
“should not access the

attribute directly.”	

Do this for all of
your attributes	

10/29/12	
 Using Classes Effectively	
 17	

