
10/25/13	

1	

•  Type: set of values and the operations on them	

§  int: (set: integers; ops: +, –, *, /, …)	

§  Time (set: times of day; ops: time span, before/after, …)	

§  Worker (set: all possible workers; ops: hire,pay,promote,…)	

§  Rectangle (set: all axis-aligned rectangles in 2D; ���

 ops: contains, intersect, …)	

•  To define a class, think of a real type you want to make	

§  Python gives you the tools, but does not do it for you	

§  Physically, any object can take on any value	

§  Discipline is required to get what you want	

Designing Types	
 From first ���
day of class!	

Making a Class into a Type	

1.  Think about what values you want in the set	

§  What attributes? What values can they have?	

2.  Think about what operations you want	

§  Often influences the previous question	

•  To make (1) precise: write a class invariant	

§  Statement we promise to keep true after every method call	

•  To make (2) precise: write method specifications	

§  Statement of what method does/what it expects (preconditions)	

•  Write your code to make these statements true!	

Planning out a Class	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""

 def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.
 Pre: hours is int >= 0; mins in 0..59"""

 def isPM(self):
 """Returns: this time is noon or later."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Time instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

Planning out a Class	

class Rectangle(object):
 """Instances represent rectangular�
 regions of the plane.
 Instance Attributes:
 t: y coordinate of top edge [float]�
 l: x coordinate of left edge [float]�
 b: y coordinate of bottom edge [float] �
 r: x coordinate of right edge [float]
 For all Rectangles, l <= r and b <= t."""

 def __init__(self, t, l, b, r):
 """The rectangle [l, r] x [t, b]�
 Pre: args are floats; l <= r; b <= t"""

 def area(self):
 """Return: area of the rectangle."""

 def intersection(self, other):
 """Return: new Rectangle describing �
 intersection of self with other."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Rectangle instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

Implementing a Class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

1.  Assume preconditions are true	

2.  Assume class invariant is true to start	

3.  Ensure method specification is fulfilled	

4.  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

Implementing an Initializer	

def __init__(self, hour, min):
"""The time hour:min.�
Pre: hour in 0..23; min in 0..59"""

You put code here	

This is true to start	

This should be true���
at the end	

self.hour = hour
self.min = min

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

10/25/13	

2	

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

Implementing a Method	

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.�
Pre: hours [int] >= 0; mins in 0..59"""

You put code here	

This is also true to start	

This should be true���
at the end	

self.min = self.min + min
self.hour = (self.hour + hour +
 self.min / 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start	

What we are supposed���
to accomplish	

Instance variables:
 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

Role of Invariants and Preconditions	

•  They both serve two purposes	

§  Help you think through your

plans in a disciplined way	

§  Communicate to the user* how

they are allowed to use the class	

•  Provide the interface of the class	

§  interface btw two programmers	

§  interface btw parts of an app	

•  Important concept for making
large software systems	

§  Will return to this idea in a week	

* …who might well be you!	

in•ter•face |ˈintərˌfās| noun	

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.	

• 	
chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.	

2. Computing a device or program
enabling a user to communicate with a
computer.	

• 	
a device or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.	

—The Oxford American Dictionary	

Enforce Method Preconditions with assert
class Time(object):
 """Instances represent times of day."""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""
 assert type(hour) == int
 assert 0 <= hour and hour < 24
 assert type(min) == int
 assert 0 <= min and min < 60

 def increment(self, hours, mins):
 """Move this time <hours> hours
 and <mins> minutes into the future.
 Pre: hours is int >= 0; mins in 0..59""”
 assert type(hour) == int
 assert type (min) == int
 assert hour >= 0 and
 assert 0 <= min and min < 60

Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]

Initializer creates/initializes all ���
of the instance attributes.	

Asserts in initializer guarantee the
initial values satisfy the invariant.	

Asserts in other methods enforce
the method preconditions.	

What About Attributes?	

•  User can access instance
attributes via assignment	

•  Example:	

>>> t = Time(2,45)
>>> t.min = 70

•  Nothing we can do	

§  Wrote methods assuming

invariant always true	

§  Our enforcement code is

all in method definitions	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def __init__(self, hour, min):
 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59""”
 assert type(hour) == int
 assert 0 <= hour and hour < 24
 assert type(min) == int
 assert 0 <= min and min < 60

Invariant
violation!	

Only protects
inside initializer	

Data Encapsulation	

•  Idea: Force the user to only use methods	

•  Do not allow direct access of attributes	

Setter Method	

•  Used to change an attribute	

•  Replaces all assignment

statements to the attribute	

•  Bad:	

>>> t.min = 55
•  Good:	

>>> t.setMin(55)

Getter Method	

•  Used to access an attribute	

•  Replaces all usage of ���

attribute in an expression	

•  Bad:	

>>> h = 60*t.min
•  Good:	

>>> h = 60*t.getMin()

Data Encapsulation	

class Time(object):
 """Instances represent times of day.
 Instance Attributes:
 hour: hour of day [int in 0..23]
 min: minute of hour [int in 0..59]"""

 def getMin(self):
 """Returns: min attribute"""
 return self._min

 def setMin(self, mins):
 """Alters min attribute to be mins
 Pre: mins is in 0..59"""
 assert type(mins) == int
 assert 0 <= mins and mins < 60
 self._min = mins

Getter	

Setter	

Precondition is same���
as attribute invariant.	

Naming Convention	

The underscore means ���
“should not access the

attribute directly.”	

Do this for all of
your attributes	

