
Conditionals &���
Control Flow	

Lecture 7	

Announcements For This Lecture	

Readings	

•  Sections 5.1-5.7 today	

•  Chapter 4 for Tuesday	

	

	

•  Will post on Wed	

§  Written assignment	

§  Do while revising A1	

Assignment 1	

•  Due Wed, Sep. 25th	

§  Consultants all weekend!	

•  Also the lab next week	

§  Open office hours for A1	

§  Turn in A1 to get credit	

•  Pair up now in CMS!	

§  Too late after you submit	

2	

9/19/13	

 Conditionals & Control Flow	

Assignment 2	

A1: The Module urllib2	

•  Module urllib2 is used to read web pages	

§  Function urlopen creates a url object	

§  u = urllib2.urlopen('http://www.cornell.edu')

•  url has a method called read()	

§  Returns contents of web page	

§ Usage: s = u.read() # s is a string

9/19/13	

 Conditionals & Control Flow	

 3	

id2	

u	

 	

	

	

	

	

	

id2	

url	

Types of Testing	

Black Box Testing	

•  Function is “opaque”	

§  Test looks at what it does	

§  Fruitful: what it returns	

§  Procedure: what changes	

•  Example: Unit tests	

•  Problems:	

§  Are the tests everything?	

§  What caused the error?	

White Box Testing	

•  Function is “transparent”	

§  Tests/debugging takes

place inside of function	

§  Focuses on where error is	

•  Example: Use of print

•  Problems:	

§  Much harder to do	

§  Must remove when done	

9/19/13	

 Conditionals & Control Flow	

 4	

Black Box Example from Lab 3	

Fruitful Function	

Create the input value

p = tuple3d.Point(1.0,2.0,3.0)

Test the input value

result = has_a_zero(p)

Compare to expected output

assert_equals(False,result)

Procedure	

Create the input value

p = tuple3d.Point(1.0,2.0,3.0)

Test the input value

cycle_left(p)

Compare to expected output

assert_floats_equal(2.0,p.x)

assert_floats_equal(3.0,p.y)

assert_floats_equal(1.0,p.z)

	

9/19/13	

 Conditionals & Control Flow	

 5	

Structure vs. Flow	

Program Structure	

•  Way statements are presented 	

§  Order statements are listed	

§  Inside/outside of a function	

§  Will see other ways…	

•  Indicate possibilities over
multiple executions	

Program Flow	

•  Order statements are executed	

§  Not the same as structure	

§  Some statements duplicated	

§  Some statements are skipped	

•  Indicates what really happens
in a single execution	

9/19/13	

 Conditionals & Control Flow	

 6	

Have already seen this 	

difference with functions	

Structure vs. Flow: Example	

Program Structure	

def foo():

print 'Hello'

Application code

if __name__ == 'main':

foo()

foo()

foo()

Program Flow	

>>> python foo.py

'Hello'

'Hello'

'Hello'

9/19/13	

 Conditionals & Control Flow	

 7	

Statement
listed once	

 Statement

executed 3x	

Bugs can occur when we
get a flow other than one
that we where expecting	

Conditionals: If-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…

<statement>

Example	

	

 # Put x in z if it is positive

 if x > 0:

 z = x

9/19/13	

 Conditionals & Control Flow	

 8	

Execution: ���

if <boolean-expression> is true, then execute all of the statements
indented directly underneath (until first non-indented statement)	

Conditionals: If-Else-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…�

else:

<statement>�

…

Example	

	

 # Put max of x, y in z

 if x > y:

 z = x

 else:

 z = y

9/19/13	

 Conditionals & Control Flow	

 9	

Execution: ���

if <boolean-expression> is true, then execute statements indented
under if; otherwise execute the statements indented under elsec	

Conditionals: “Control Flow” Statements	

if b : �

 s1 # statement

s3

if b :�
 s1

else:

 s2

s3�

	

9/19/13	

 Conditionals & Control Flow	

 10	

s1

s3

s2

b

s1

s3

b
 Branch Point:	

Evaluate & Choose	

Statement: Execute	

Flow	

Program only
takes one path
each execution	

Program Flow and Call Frames	

 def max(x,y):

 """Returns: max of x, y""”

 # simple implementation

1 if x > y:

2 return x

3 return y

 max(0,3):	

	

9/19/13	

 Conditionals & Control Flow	

 11	

max
 1	

x
 0

y
 3

Frame sequence 	

depends on flow	

Program Flow and Call Frames	

 def max(x,y):

 """Returns: max of x, y""”

 # simple implementation

1 if x > y:

2 return x

3 return y

 max(0,3):	

	

9/19/13	

 Conditionals & Control Flow	

 12	

max
 3	

x
 0

y
 3

Frame sequence 	

depends on flow	

Skips line 2	

Program Flow and Call Frames	

 def max(x,y):

 """Returns: max of x, y""”

 # simple implementation

1 if x > y:

2 return x

3 return y

 max(0,3):	

	

9/19/13	

 Conditionals & Control Flow	

 13	

max

x
 0

y
 3

Frame sequence 	

depends on flow	

Skips line 2	

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 14	

max
 1	

x
 3 y
 0

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 15	

max
 2	

x
 3 y
 0

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 16	

max
 3	

x
 3 y
 0

temp
 3

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 17	

max
 4	

x
 0 y
 0

temp
 3

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 18	

max
 5	

x
 0 y
 3

temp
 3

Program Flow vs. Local Variables	

 def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

1 if x > y:

2 temp = x

3 x = y

4 y = temp

5 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

9/19/13	

 Conditionals & Control Flow	

 19	

max

x
 0 y
 3

temp
 3

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

•  Value of max(3,0)?	

9/19/13	

 Conditionals & Control Flow	

 20	

A: 3

B: 0	

C: Error!	

D: I do not know	

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

•  Value of max(3,0)?	

9/19/13	

 Conditionals & Control Flow	

 21	

A: 3

B: 0	

C: Error!	

D: I do not know	

CORRECT	

•  Local variables last until	

§  They are deleted or	

§  End of the function	

•  Even if defined inside if

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

•  Value of max(0,3)?	

9/19/13	

 Conditionals & Control Flow	

 22	

A: 3

B: 0	

C: Error!	

D: I do not know	

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

•  Value of max(0,3)?	

9/19/13	

 Conditionals & Control Flow	

 23	

A: 3

B: 0	

C: Error!	

D: I do not know	

CORRECT	

•  Variable existence
depends on flow	

•  Understanding flow ���
is important in testing	

Program Flow and Testing	

•  Must understand which
flow caused the error	

§  Unit test produces error	

§  Visualization tools show

the current flow for error	

•  Visualization tools?	

§  print statements	

§  Advanced tools in IDEs

(Integrated Dev. Environ.)	

	

 # Put max of x, y in z

 print 'before if'

 if x > y:

 print 'if x>y'�
 z = x

 else:

 print 'else x>y'�
 z = y

 print 'after if'

9/19/13	

 Conditionals & Control Flow	

 24	

Program Flow and Testing	

•  Call these tools traces	

•  No requirements on how ���
to implement your traces	

§  Less print statements ok	

§  Do not need to word them

exactly like we do	

§  Do what ever is easiest ���

for you to see the flow	

•  Example: flow.py

	

 # Put max of x, y in z

 print 'before if'

 if x > y:

 print 'if x>y'�
 z = x

 else:

 print 'else x<=y'�
 z = y

 print 'after if'

9/19/13	

 Conditionals & Control Flow	

 25	

Traces	

Watches vs. Traces	

Watch	

•  Visualization tool���
(e.g. print statement)	

•  Looks at variable value	

•  Often after an assignment	

•  What you did in lab	

Trace	

•  Visualization tool���
(e.g. print statement)	

•  Looks at program flow	

•  Before/after any point

where flow can change	

9/19/13	

 Conditionals & Control Flow	

 26	

Traces and Functions	

def cycle_left(p):

print 'Start cycle_left()'

p.x = p.y

print p.x

p.y = p.z

print p.y

p.z = p.x

print p.z

print 'End cycle_left()'

9/19/13	

 Conditionals & Control Flow	

 27	

Watches	

 Traces	

Example: flow.py

Local Variables Revisited	

•  Never refer to a variable
that might not exist	

•  Variable “scope”	

§  Block (indented group)

where it was first assigned	

§  Way to think of variables; ���

not actually part of Python	

•  Rule of Thumb: Limit
variable usage to its scope	

9/19/13	

 Conditionals & Control Flow	

 28	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put larger in temp

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

First assigned	

Outside scope	

Local Variables Revisited	

•  Never refer to a variable
that might not exist	

•  Variable “scope”	

§  Block (indented group)

where it was first assigned	

§  Way to think of variables; ���

not actually part of Python	

•  Rule of Thumb: Limit
variable usage to its scope	

9/19/13	

 Conditionals & Control Flow	

 29	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put larger in temp

 temp = y

 if x > y:

 temp = x

 return temp

First assigned	

Inside scope	

Variation on max	

def max(x,y):

 """Returns: �
 max of x, y"""

 if x > y:

 return x

 else:

 return y	

9/19/13	

 Conditionals & Control Flow	

 30	

There are two returns!���
But only one is executed	

Which is better?	

Matter of preference	

Conditionals: If-Elif-Else-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…�

elif <boolean-expression>:

<statement>�

…

 …

else:

<statement>�

…

Example	

	

 # Put max of x, y, z in w

 if x > y and x > z:

 w = x

 elif y > z:

 w = y

 else:

 w = z

9/19/13	

 Conditionals & Control Flow	

 31	

Conditionals: If-Elif-Else-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…�

elif <boolean-expression>:

<statement>�

…

 …

else:

<statement>�

…

Notes on Use	

9/19/13	

 Conditionals & Control Flow	

 32	

•  No limit on number of elif

§  Can have as many as want	

§  Must be between if, else

•  The else is always optional	

§  if-elif by itself is fine	

•  Booleans checked in order	

§  Once it finds a true one, it

skips over all the others	

§  else means all are false	

Conditional Expressions	

Format	

e1 if bexp else e2

•  e1 and e2 are any expression	

•  bexp is a boolean expression	

•  This is an expression!	

Example	

Put max of x, y in z

z = x if x > y else y

9/19/13	

 Conditionals & Control Flow	

 33	

expression, 	

not statement	

