
1	

Anatomy of a Specification	

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'

Precondition: n is a string �
representing a person’s name"""
print 'Hello '+n+'!'

One line description,	

followed by blank line	

More detail about the
function. It may be
many paragraphs.	

Precondition specifies
assumptions we make
about the arguments	

Preconditions	

•  Precondition is a promise	

§  If precondition is true, ���

the function works	

§  If precondition is false, ���

no guarantees at all	

•  Get software bugs when	

§  Function precondition is
not documented properly	

§  Function is used in ways ���
that violates precondition	

>>> to_centigrade(32)
0.0
>>> to_centigrade(212)
100.0
>>> to_centigrade('32')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "temperature.py", line 19 …
TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated	

Global Variables and Specifications	

•  Python does not support docstrings for variables	

§ Only functions and modules (e.g. first docstring)	

§  help() shows “data”, but does not describe it	

•  But we still need to document them	

§ Use a single line comment with #	

§ Describe what the variable means	

•  Example:	

§  FREEZING_C = 0.0 # temp. water freezes in C
§  BOILING_C = 100.0 # temp. water boils in C

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

def number_vowels(w):
 """Returns: number of vowels in word w.

 Precondition: w string w/ at least one letter and only letters"""
 pass # nothing here yet!
	

	

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body. 	

Representative Tests	

•  Cannot test all inputs	

§  “Infinite” possibilities	

•  Limit ourselves to tests ���
that are representative	

§  Each test is a significantly

different input	

§  Every possible input is

similar to one chosen	

•  An art, not a science	

§  If easy, never have bugs	

§  Learn with much practice	

Representative Tests for���
number_vowels(w)

•  Word with just one vowel	

§  For each possible vowel!	

•  Word with multiple vowels	

§  Of the same vowel	

§  Of different vowels	

•  Word with only vowels	

•  Word with no vowels	

Running Example	

•  The following function has a bug:	

def last_name_first(n):
"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name> �
with one or more blanks between the two names"""

 end_first = n.find(' ')
 first = n[:end_first]
 last = n[end_first+1:]

return last+', '+first

•  Representative Tests:	

§  last_name_first('Walker White')
§  last_name_first('Walker White')

	

Look at precondition
when choosing tests	

2	

Unit Test: A Special Kind of Module	

•  A unit test is a module that tests another module	

§  It imports the other module (so it can access it)	

§  It imports the cornelltest module (for testing)	

§  It defines one or more test procedures	

•  Evaluate the function(s) on the test cases	

•  Compare the result to the expected value	

§  It has special code that calls the test procedures	

•  The test procedures use the cornelltest function	

def assert_equals(expected,received):
 """Quit program if expected and received differ"""

Modules vs. Scripts	

Module	

•  Provides functions, constants	

§  Example: temperature.py	

•  import it into Python	

§  In interactive shell…	

§  or other module	

•  All code is either	

§  In a function definition, or	

§  A variable assignment	

	

Script	

•  Behaves like an application	

§  Example: helloApp.py	

•  Run it from command line	

§  python helloApp.y
§  No interactive shell	

§  import acts “weird”	

•  Commands outside functions	

§  Does each one in order	

9/11/12	
 Specifications & Testing	
 8	

Modules/Scripts in this Course	

•  Our modules consist of	

§  Function definitions	

§  “Constants” (global vars)	

§  Optional application code

to call the functions	

•  All statements must	

§  be inside of a function or	

§  assign a constant or	

§  be in the application code	

•  import should only pull in
definitions, not app code	

temperature.py
...
Functions
def to_centigrade(x):
 """Returns: x converted to C"""
…
Constants
FREEZING_C = 0.0 # temp. water freezes
…
Application code
if __name__ == '__main__':
 print 'Provide a temp. in Fahrenheit:'
 f = float(raw_input())
 c = round(to_centigrade(f),2)
 print 'The temperature is '+`c`+' C'

Testing last_name_first(n)

test procedure
def test_last_name_first():
 """Test procedure for last_name_first(n)"""
 unittest.assert_equals('White, Walker',
 last_name_first('Walker White'))
 unittest.assert_equals('White, Walker',
 last_name_first('Walker White'))

Application code
if __name__ == '__main__':
 test_last_name_first()
 print 'Module name is working correctly'

Expressions inside
of () can be split
over several lines.	

Message will print
out only if no errors.	

Quits Python
if not equal	

Finding the Error	

•  Unit tests cannot find the source of an error	

•  Idea: “Visualize” the program with print statements	

def last_name_first(n):
 """Returns: copy of <n> in form <last>, <first>"""
 end_first = n.find(' ')
 print end_first
 first = n[:end_first]
 print 'first is '+`first`
 last = n[end_first+1:]
 print 'last is '+`last`
 return last+', '+first

Print variable after
each assignment	

Optional: Annotate
value to make it
easier to identify	

Types of Testing	

Black Box Testing	

•  Function is “opaque”	

§  Test looks at what it does	

§  Fruitful: what it returns	

§  Procedure: what changes	

•  Example: Unit tests	

•  Problems:	

§  Are the tests everything?	

§  What caused the error?	

White Box Testing	

•  Function is “transparent”	

§  Tests/debugging takes

place inside of function	

§  Focuses on where error is	

•  Example: Use of print
•  Problems:	

§  Much harder to do	

§  Must remove when done	

