
Defining Functions	

Lecture 4	

Announcements for this Lecture	

To Do This Week	

•  Complete Quiz 0!	

§  No quiz; can’t take course	

§  This week is last chance	

•  Also do the survey	

•  Read Sections 3.5 – 3.13 	

Today’s Lab	

•  Like last week’s lab	

§  Still using a worksheet	

§  But also writing code	

§  Show both for credit	

•  Prep. for Assignment 1	

§  Finish Part 4 in Lab!	

§  Okay to do rest at home	

9/10/13	

 2	

Defining Functions	

[xkcd.com]	

One-on-One Sessions	

•  Starting next week: 1/2-hour one-on-one sessions	

§  Bring computer and work with instructor, TA or consultant	

§  Hands on, dedicated help with Lab 2 and/or Lab 3	

§  To prepare for assignment, not for help on assignment	

•  Limited availability: we cannot get to everyone	

§  Students with experience or confidence should hold back	

•  Sign up online in CMS: first come, first served	

§  Choose assignment One-on-One	

§  Pick a time that works for you; will add slots as possible	

§  Can sign up starting at 1pm THURSDAY	

9/10/13	

 Defining Functions	

 3	

Recall: Modules 	

•  Modules provide extra functions, variables	

§  Example: math provides math.cos(), math.pi	

§ Access them with the import command 	

•  Python provides a lot of them for us	

•  This Lecture: How to make modules	

§ Komodo Edit to make a module	

§  Python to use the module	

	

9/10/13	

 Defining Functions	

 4	

Two different	

programs	

Python Shell vs. Modules	

•  Launch in command line	

•  Type each line separately	

•  Python executes as you type	

•  Write in a text editor	

§  We use Komodo Edit	

§  But anything will work	

•  Run module with import

9/10/13	

 Defining Functions	

 5	

Using a Module	

Module Contents	

module.py

""" This is a simple module.

It shows how modules work"""

x = 1+2

x = 3*x

x

9/10/13	

 Defining Functions	

 6	

Single line comment	

(not executed)	

Docstring (note the Triple Quotes)	

Acts as a multiple-line comment	

Useful for code documentation	

Commands	

Executed on import

Not a command.	

import ignores this	

Using a Module	

Module Contents	

module.py

""" This is a simple module.

It shows how modules work"""

x = 1+2

x = 3*x

x

Python Shell	

>>> import module

>>>

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>>

9

>>>

9/10/13	

 Defining Functions	

 7	

x

module.x

help(module)	

“Module data” must be
prefixed by module name	

Prints docstring and
module contents	

Modules Must be in Working Directory!	

9/10/13	

 Defining Functions	

 8	

Module you want ���
is in this folder	

Modules Must be in Working Directory!	

9/10/13	

 Defining Functions	

 9	

Module you want ���
is in this folder	

Have to navigate to folder
BEFORE running Python	

We Write Programs to Do Things	

•  Functions are the key doers	

9/10/13	

 Defining Functions	

 10	

Function Call	

 Function Definition	

•  Command to do the function	

	

greet('Walker')	

	

•  Defines what function does	

	

def greet(n):	

	

 	

print 'Hello '+n+'!'

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is listed within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Function	

Header	

Function	

Body	

(indented)	

Anatomy of a Function Definition	

def greet(n):

"""Prints a greeting to the name n

Precondition: n is a string �
representing a person’s name"""

print 'Hello '+n+'!'

print 'How are you?'

9/10/13	

 Defining Functions	

 11	

Function Header	

name	

 parameters	

Docstring
Specification	

Statements to
execute when called	

The vertical line
indicates indentation	

Use vertical lines when you write Python
on exams so we can see indentation	

Procedures vs. Fruitful Functions	

Procedures	

•  Functions that do something	

•  Call them as a statement	

•  Example: greet('Walker')

Fruitful Functions	

•  Functions that give a value	

•  Call them in an expression	

•  Example: x = round(2.56,1)

9/10/13	

 Defining Functions	

 12	

Historical Aside	

•  Historically “function” = “fruitful function”	

•  But now we use “function” to refer to both	

The return Statement	

•  Fruitful functions require a return statement	

•  Format: return <expression>

§  Provides value when call is used in an expression	

§ Also stops executing the function!	

§ Any statements after a return are ignored	

•  Example: temperature converter function	

def to_centigrade(x):

"""Returns: x converted to centigrade"""

return 5*(x-32)/9.0

9/10/13	

 Defining Functions	

 13	

Functions and Modules	

•  Purpose of modules is function definitions	

§  Function definitions are written in module file	

§  Import the module to call the functions	

•  Your Python workflow (right now) is	

1.  Write a function in a module (a .py file)	

2.  Open up the command shell	

3.  Move to the directory with this file	

4.  Start Python (type python)	

5.  Import the module	

6.  Try out the function	

9/10/13	

 Defining Functions	

 14	

Aside: Constants	

•  Modules often have variables outside a function	

§ We call these global variables	

§ Accessible once you import the module	

•  Global variables should be constants	

§ Variables that never, ever change	

§ Mnemonic representation of important value	

§  Example: math.pi, math.e in math

•  In this class, constant names are capitalized!	

§  So we can tell them apart from non-constants	

9/10/13	

 Defining Functions	

 15	

Module Example: Temperature Converter	

temperature.py

"""Conversion functions between fahrenheit and centrigrade"""

Functions

def to_centigrade(x):

 """Returns: x converted to centigrade"""

 return 5*(x-32)/9.0

def to_fahrenheit(x):

 """Returns: x converted to fahrenheit"""

 return 9*x/5.0+32

Constants

FREEZING_C = 0.0 # temp. water freezes

…	

9/10/13	

 Defining Functions	

 16	

Style Guideline:	

Two blank lines between	

function definitions	

Example from Previous Slides (Online)	

def second_in_list(s):

 """Returns: second item in comma-separated list

 The final result does not have any whitespace on edges

 Precondition: s is a string of items separated by a comma."""

 startcomma = s.index(',')

 tail = s[startcomma+1:]

 endcomma = tail.index(',')

 item = tail[:endcomma].strip()

 return item

9/10/13	

 Defining Functions	

 17	

See commalist.py

• Number of statement in the ���
 function body to execute next ���
• Starts with 1	

Draw parameters ���
as variables ���
(named boxes)	

How Do Functions Work?	

•  Function Frame: Representation of function call	

•  A conceptual model of Python	

9/10/13	

 Defining Functions	

 18	

Draw template on 	

a piece of paper	

 function name	

local variables (later in lecture)	

parameters	

instruction counter	

Text (Section 3.10) vs. Class	

Textbook	

 This Class	

9/10/13	

 Defining Functions	

 19	

 def to_centigrade(x):

 return 5*(x-32)/9.0

Call: to_centigrade(50.0) 	

Definition:	

to_centigrade
 1	

50.0	

x

to_centigrade
 x –> 50.0

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/13	

 Defining Functions	

 20	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade
 1	

50.0	

x

Initial call frame	

(before exec body)	

next line to execute	

1	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/13	

 Defining Functions	

 21	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade

50.0	

x

Executing the	

return statement	

The return terminates;	

no next line to execute	

1	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/13	

 Defining Functions	

 22	

 def to_centigrade(x):

 return 5*(x-32)/9.0
 But don’t actually

erase on an exam	

1	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/10/13	

 Defining Functions	

 23	

1	

a	

 2	

b	

1	

2	

3	

 swap
 1	

1	

a	

 2	

b	

Global Variables	

Call Frame	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/10/13	

 Defining Functions	

 24	

1	

a	

 2	

b	

swap
 2	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/10/13	

 Defining Functions	

 25	

1	

a	

 2	

b	

swap
 3	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/10/13	

 Defining Functions	

 26	

1	

a	

 2	

b	

swap

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

 ✗	

 1	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

9/10/13	

 Defining Functions	

 27	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

2	

3	

