
1	

One-on-One Sessions	

•  Starting next week: 1/2-hour one-on-one sessions	

§  Bring computer and work with instructor, TA or consultant	

§  Hands on, dedicated help with Lab 2 and/or Lab 3	

§  To prepare for assignment, not for help on assignment	

•  Limited availability: we cannot get to everyone	

§  Students with experience or confidence should hold back	

•  Sign up online in CMS: first come, first served	

§  Choose assignment One-on-One	

§  Pick a time that works for you; will add slots as possible	

§  Can sign up starting at 1pm THURSDAY	

Python Shell vs. Modules	

•  Launch in command line	

•  Type each line separately	

•  Python executes as you type	

•  Write in a text editor	

§  We use Komodo Edit	

§  But anything will work	

•  Run module with import

Using a Module	

Module Contents	

module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

Python Shell	

>>> import module
>>>
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>
9
>>>

x

module.x

help(module)	

“Module data” must be
prefixed by module name	

Prints docstring and
module contents	

We Write Programs to Do Things	

•  Functions are the key doers	

Function Call	
 Function Definition	

•  Command to do the function	

	
greet('Walker')	

	

•  Defines what function does	

	
def greet(n):	

	
 	
print 'Hello '+n+'!'

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is listed within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Function	

Header	

Function	

Body	

(indented)	

Anatomy of a Function Definition	

def greet(n):

"""Prints a greeting to the name n

Precondition: n is a string �
representing a person’s name"""
print 'Hello '+n+'!'
print 'How are you?'

Function Header	

name	
 parameters	

Docstring
Specification	

Statements to
execute when called	

The vertical line
indicates indentation	

Use vertical lines when you write Python
on exams so we can see indentation	

Procedures vs. Fruitful Functions	

Procedures	

•  Functions that do something	

•  Call them as a statement	

•  Example: greet('Walker')

Fruitful Functions	

•  Functions that give a value	

•  Call them in an expression	

•  Example: x = round(2.56,1)

Historical Aside	

•  Historically “function” = “fruitful function”	

•  But now we use “function” to refer to both	

2	

The return Statement	

•  Fruitful functions require a return statement	

•  Format: return <expression>

§  Provides value when call is used in an expression	

§ Also stops executing the function!	

§ Any statements after a return are ignored	

•  Example: temperature converter function	

def to_centigrade(x):

"""Returns: x converted to centigrade"""
return 5*(x-32)/9.0

Module Example: Temperature Converter	

temperature.py
"""Conversion functions between fahrenheit and centrigrade"""

Functions
def to_centigrade(x):
 """Returns: x converted to centigrade"""
 return 5*(x-32)/9.0

def to_fahrenheit(x):
 """Returns: x converted to fahrenheit"""
 return 9*x/5.0+32

Constants
FREEZING_C = 0.0 # temp. water freezes
…	

Style Guideline:	

Two blank lines between	

function definitions	

• Number of statement in the ���
 function body to execute next ���
• Starts with 1	

Draw parameters ���
as variables ���
(named boxes)	

How Do Functions Work?	

•  Function Frame: Representation of function call	

•  A conceptual model of Python	

Draw template on 	

a piece of paper	

 function name	

local variables (later in lecture)	

parameters	

instruction counter	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

 def to_centigrade(x):
 return 5*(x-32)/9.0

to_centigrade 1	

50.0	
x

Initial call frame	

(before exec body)	

next line to execute	

1	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

 def to_centigrade(x):
 return 5*(x-32)/9.0

to_centigrade

50.0	
x

Executing the	

return statement	

The return terminates;	

no next line to execute	
1	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):
 """Swap vars a & b"""
 tmp = a
 a = b
 b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

1	
a	
 2	
b	

swap

1	
a	
 2	
b	

Global Variables	

Call Frame	

1	
tmp	

✗	
2	
 ✗	
 1	

1	

2	

3	

