
Strings,���
Functions, & Modules	

Lecture 3	

Please Fix Your E-mails	

•  sky.mcreynolds@sfuhs.org	

•  evanisenstein13@email.usn.org	

	

8/30/12	
 Modules & Functions	
 2	

Readings for Next Two Lectures	

This Lecture	

•  Sections 3.1-3.4	

•  Sections 8.1, 8.2, 8.4, 8.5	

•  Browse the Python API	

§  Do not need to read all of it	

§  Look over built-in functions	

	

•  Complete Chapter 3	

•  PLive: ���
Activities 3-3.1, 3-3.2, 3-3.4
(not 3-3.3), 3-4.1, 3-4.2.	

•  (Old) Lecture on VideoNote	

8/30/12	
 3	
Modules & Functions	

Next Week	

[xkcd.com]	

String: Text as a Value	

•  String are quoted characters	

§  'abc d' (Python prefers)	

§  "abc d" (most languages)	

•  How to write quotes in quotes?	

§  Delineate with “other quote”	

§  Example: " ' " or ' " '
§  What if need both " and ' ?	

•  Solution: escape characters	

§  Format: \ + letter	

§  Special or invisible chars	

9/2/12	
 Objects & Strings	
 4	

Char	
 Meaning	

\' single quote	

\" double quote	

\n new line	

\t tab	

\\ backslash	

Type: str

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

9/2/12	
 Objects & Strings	
 5	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'
B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

9/2/12	
 Objects & Strings	
 6	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'
B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

CORRECT	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

9/2/12	
 Objects & Strings	
 7	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'
B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'
§  s[4] is 'd'
§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

9/2/12	
 Objects & Strings	
 8	

a	
 b	
 c	
 	
 d	

0	
 1	
 2	
 3 	
4	

H	
 e	
 l	
 l	
 o	

0	
 1	
 2	
 3 	
4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'
B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

CORRECT	

Other Things We Can Do With Strings	

•  Operation in: s1 in s2

§  Tests if s1 “a part of” s2

§  Say s1 a substring of s2

§  Evaluates to a bool

•  Examples:	

§  s = 'abracadabra'
§  'a' in s == True
§  'cad' in s == True

§  'foo' in s == False

•  Function len: len(s)
§  Value is # of chars in s	

§  Evaluates to an int

•  Examples:	

§  s = 'abracadabra’
§  len(s) == 11
§  len(s[1:5]) == 4

§  s[1:len(s)-1] == 'bracadabr'

8/30/12	
 Modules & Functions	
 9	

Function Calls	

•  Python supports expressions with math-like functions	

§  A function in an expression is a function call	

§  Will explain the meaning of this later	

•  Function expressions have the form fun(x,y,…)	

	

•  Examples (math functions that work in Python): 	

§  round(2.34)
§  max(a+3,24)

1/24/12	
 Overview, Types & Expressions	
 10	

function ���
name	

argument	

Arguments can be ���
any expression

Built-In Functions	

•  You have seen many functions already	

§  Type casting functions: int(), float(), bool()
§ Dynamically type an expression: type()
§ Help function: help()

•  Getting user input: raw_input()
• print <string> is not a function call	

§  It is simply a statement (like assignment)	

§  But it is in Python 3.x: print(<string>)

8/30/12	
 Modules & Functions	
 11	

Arguments go in (),
but name() refers to
function in general	

Method: A Special Type of Function	

•  Methods are unique (right now) to strings	

•  Like a function call with a “string in front”	

§ Usage: string.method(x,y…)	

§  The string is an implicit argument	

•  Example: upper()
§  s = 'Hello World'
§  s.upper() == 'HELLO WORLD'
§  s[1:5].upper() == 'ELLO'
§  'abc'.upper() == 'ABC'

8/30/12	
 Modules & Functions	
 12	

Will see why we
do it this way
later in course	

Examples of String Methods	

•  s1.index(s2)
§  Position of the first

instance of s2 in s1

•  s1.count(s2)
§  Number of times s2

appears inside of s1

•  s.strip()
§  A copy of s with white-

space removed at ends

•  s = 'abracadabra'
•  s.index('a') == 0
•  s.index('rac') == 2

•  s.count('a') == 5

•  ' a b '.strip() == 'a b'

8/30/12	
 Modules & Functions	
 13	

See Python
Docs for more	

Built-in Functions vs Modules	

•  The number of built-in functions is small	

§  http://docs.python.org/2/library/functions.html	

•  Missing a lot of functions you would expect	

§  Example: cos(), sqrt()

•  Module: file that contains Python code
§ A way for Python to provide optional functions
§  To access a module, the import command
§ Access the functions using module as a prefix

8/30/12	
 Modules & Functions	
 14	

Example: Module math

>>> import math
>>> math.cos(0)
1.0
>>> cos(0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'cos' is not defined
>>> math.pi
3.141592653589793
>>> math.cos(math.pi)
-1.0

8/30/12	
 Modules & Functions	
 15	

To access math
functions	

Functions
require math

prefix!	

Module has
variables too!	

Example: Module math

>>> import math
>>> math.cos(0)
1.0
>>> cos(0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'cos' is not defined
>>> math.pi
3.141592653589793
>>> math.cos(math.pi)
-1.0

•  io
§  Read/write from files	

•  random
§  Generate random numbers	

§  Can pick any distribution	

•  string
§  Useful string functions	

•  sys
§  Information about your OS	

	

	
8/30/12	
 Modules & Functions	
 16	

To access math
functions	

Functions
require math

prefix!	

Module has
variables too!	

Other Modules	

Reading the Python Documentation	

8/30/12	
 Modules & Functions	
 17	

Function 	

name	

Possible arguments	

What the function evaluates to	

Module	

http://docs.python.org/library	

Using the from Keyword	

>>> import math
>>> math.pi
3.141592653589793

>>> from math import pi
>>> pi
3.141592653589793

>>> from math import *
>>> cos(pi)
-1.0

•  Be careful using from!	

•  Namespaces are safer	

§  Modules might conflict���
(functions w/ same name)	

§  What if import both?	

•  Example: Turtles	

§  Use in Assignment 4	

§  2 modules: turtle, tkturtle

§  Both have func. Turtle()

	
8/30/12	
 Modules & Functions	
 18	

Must prefix with
module name	

No prefix needed
for variable pi	

No prefix needed ���
for anything in math

A String Puzzle (Extraction Practice)	

•  Given: a string with a parenthesis pair inside	

s = 'labs are (usually) every week'

•  Goal: expression for substring inside parentheses	

§  Step 1: Find the open parenthesis	

start = s.index('(')
§  Step 2: Store part of string after parenthesis in tail	

tail = s[start+1:]	

§  Step 3: Get the part of the tail before close parenthesis	

tail[:tail.index(')')]

8/30/12	
 Modules & Functions	
 19	

•  Given: A string that is a list of words separated by
commas, and spaces in between each comma:	

	
pets = 'cat, dog, mouse, lion’

•  Goal: Want second element with no spaces or commas.���
Put result inside of variable answer

Where, in the following sequence of commands, is ���
there a (conceptual) error that prevents our goal? 	

	

A: startcomma = info.index(',')
B: tail = info[startcomma+1:]
C: endcomma = tail.index(',')
D: df = tail[:endcomma]	

E: this sequence achieves the goal	

•  Given: A string that is a list of words separated by
commas, and spaces in between each comma:	

	
pets = 'cat, dog, mouse, lion’

•  Goal: Want second element with no spaces or commas.���
Put result inside of variable answer

Where, in the following sequence of commands, is ���
there a (conceptual) error that prevents our goal? 	

	

A: startcomma = info.index(',')
B: tail = info[startcomma+1:]
C: endcomma = tail.index(',')
D: df = tail[:endcomma]	

E: this sequence achieves the goal	

tail[:endcomma].strip()

+2 instead, or use 	

