CS 1110, LAB 10: WHILE-LOOPS
http://www.cs.cornell.edu/courses/cs1110/2013fa/labs/lab10.pdf

First Name: __ Last Name: ___ NetID: \qquad
This lab is designed to give you practice with using while-loops. It includes both for loops over ranges integers and over more complicated conditions. With both the exam and the assignment due in the next week, we have tried to keep the demands of this lab reasonable.
Lab Materials. Download the appropriate files from the Labs section of the course web page.
http://www.cs.cornell.edu/courses/cs1110/2013fa/labs
When you are done, you should have the following two files.

- lab10.py (the primary module for the lab)
- test_lab10.py (a unit test for lab10.py)

Create a new directory on your hard drive and download all of the files into that directory. You can also get the files bundled in a single ZIP file called lab10.zip from the course web page.
Getting Credit for the Lab. The lab includes both written exercises and coding exercises. The latter requires that you modify the file lab10.py. We have provided a unit test, but you do not need to modify this file. When you are done, show both this handout and the file lab10.py to your instructor. You instructor will then swipe your ID card to record your success.

As with all previous labs, if you do not finish during class time, you have until the beginning of lab next week to finish it. You should always do your best to finish during lab hours. Remember that labs are graded on effort, not correctness.

Written Exercises

Ranges of Integers. How many values are in the following ranges? The last few requires a formula in terms of h and k. Remember that in the notation $h . . k$, we require $k \geq h-1$. For example, $5 . .4$ is OK but $5 \ldots 3$ is not allowed.

Given Range	Contents	Given Range	Contents
$5 \ldots 7$		$\mathrm{~h} . \mathrm{h}+1$	
$5 . .6$		$\mathrm{~h} . . \mathrm{h}$	
$5 . .5$		$\mathrm{~h} . \mathrm{h}-1$	
$5 . .4$		$\mathrm{~h} . \mathrm{k}$	
4.44		$\mathrm{~h}-1 \ldots \mathrm{~h}+1$	

[^0]Assigning to Range Variables. Each line below asks you to write an assignment. We have done the first one for you to give you an idea of what we are looking for.

Range	Want	Assignment Statement
$\mathrm{h} . \mathrm{k}$	Assign to k so that the range has 1 element	$\mathrm{k}=\mathrm{h}$
$\mathrm{h} . \mathrm{k}$	Assign to h so that the range has 1 element	
$\mathrm{h} . \mathrm{k}$	Assign to k so that the range has 0 elements	
$\mathrm{h} . \mathrm{k}$	Assign to h so that the range has 0 elements	
$0 . . \mathrm{n}-1$	Assign to n so that the range has 1 element	
$0 . . \mathrm{n}-1$	Assign to n so that the range has 0 elements	
$\mathrm{h}-1 \ldots 10$	Assign to h so that the range has 1 element	
$\mathrm{h}+1 \ldots 10$	Assign to h to that the range has 0 elements	

Coding While-Loops

Inside of lab10.py you will see the specifications of four functions. You are to implement the first three of the functions in this module. The last function is optional. Each implementation must contain a while-loop. You will notice that the first two a functions from Lab 7, the recursion lab. This is not a mistake; we want you to implement them differently using recursion. The third function is a variation on the second, and is easier to implement with a while-loop than recursion.

The optional function (which you do not have to implement) is the trickiest. It is a function to compute a cube root, and is a variation on the sqrt function shown in class. As with sqrt, it should use Newton's Method. Newton's Method for finding the cube root of c is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-c}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}+\frac{c}{3 x_{n}^{2}}
$$

You should write a while-loop to compute x_{n} and stop when it is close enough to the correct answer. The error of stopping at x_{n} is the absolute value $\left|x_{n}^{3}-c\right|$.

Following the example of sqrt shown in class, use this to implement cuberoot. The initial value x_{0} is your choice; you should start with a reasonable guess. A different guess will affect how many loops the while-loop requires.

For all of these functions, we have provided a unit test. You do not need to add any new tests. Simply use it to check you answers. When you are convinced that everything is working correctly, show your instructor what you have.

[^0]: Course authors: D. Gries, L. Lee, S. Marschner, W. White

