
CS 1110, LAB 8: BLACKJACK

http://www.cs.cornell.edu/courses/cs11102013fa/labs/lab08.pdf

First Name: Last Name: NetID:

This lab is a lot shorter than you might realize at first glance. You already have enough work
with the assignment due this week, and the next assignment is going to be longer. Therefore, we
thought it best to give you a straight-forward lab that built up some practice with classes.

0.1. Lab Materials. We have created several Python files for this lab. You can download all of
the from the Labs section of the course web page.

http://www.cs.cornell.edu/courses/cs1110/2013fa/labs

When you are done, you should have the following three files.

• blackjack.py (the primary module for the lab)
• test blackjack.py (a unit test for blackjack.py)
• card.py (a support module, which you will not touch)

You should create a new directory on your hard drive and download all of the files into that
directory. Alternatively, you can get all of the files bundled in a single ZIP file called lab08.zip

from the Labs section of the course web page.

0.2. Getting Credit for the Lab. Everything in this lab will either be written on this handout,
or implemented in blackjack.py. When you are done, show both of these to your instructor. You
instructor will then swipe your ID card to record your success. You do not need to submit the
paper with your answers, and you do not need to submit the computer files anywhere.

As with the previous lab, if you do not finish during the lab, you have until the beginning of
lab next week to finish it. You should always do your best to finish during lab hours. Remember
that labs are graded on effort, not correctness.

1. The Game of Blackjack

In this lab, you will finish a class definition for Blackjack that a casino could use to run multiple
blackjack games simultaneously.

A player wins at blackjack by ending with a hand that has more points than the dealer’s, but
not more than 21 points. If someone exceeds 21 points, they are said to have “gone bust” and
immediately lose. Points come from the ranks of the cards in a hand: 10 points for each face card
(Jack, Queen, or King), 11 points for an ace, and the rank of the card for anything else (e.g. a 4 of
anything is 4 points). In some games of blackjack, an ace can be worth either 1 or 11, whichever is
better; we will ignore that rule for our implementation.

Course authors: D. Gries, L. Lee, S. Marschner, W. White

1

http://www.cs.cornell.edu/courses/cs11102013fa/labs/lab08.pdf
http://www.cs.cornell.edu/courses/cs1110/2013fa/labs


Play begins with two cards being dealt to the player and one card to the dealer. All cards in
each hand are always visible to all participants. The player can chose to “hit” (get an additional
card from the deck) or “stay” (turn over play to the dealer). If the player eventually stays without
going bust, then the dealer draws cards until she goes bust or decides to stop.

Once you complete the lab, you can relax and play a few rounds of the game yourself. The file
blackjack.py has script code, and so can be safely run as a script. He is a sample transcript
showing off a working game:

[llee: lab08] python blackjack.py

Welcome to CS 1110 Blackjack.

Rules: Face cards are 10 points. Aces are 11 points.

All other cards are at face value.

Your hand:

8 of Spades

6 of Clubs

Dealer's hand:

9 of Spades

Type h for new card, s to stop: h

You drew the 6 of Spades

Type h for new card, s to stop: s

Dealer drew the 3 of Spades

Dealer drew the 4 of Spades

Dealer drew the 8 of Hearts

Dealer went bust, you win!

The final scores were player: 20; dealer: 24

1.1. The Module card. The Card class is provided by the module card. You do not need to do
anything with this module at all. You might want to check out the Card methods, but that is not
necessary. The helper functions in blackjack.py take care of all of those details for you.

2. Completing the Blackjack class definition

You should proceed in an iterative fashion. For each step outlined below,

(1) Read the directions in this handout and the specification of the relevant methods.

(2) Look at the appropriate test cases in test blackjack.py, to better understand the goal.

(3) Remove lines with the comment “implement me”, and write the appropriate code.

(4) Test your code using test blackjack.py. You do not need to add test cases to it.

Make sure each method passes its test cases before moving on to implement the next method. This
is important because many of the methods here build on earlier ones.

2



2.1. Fix the method headers. There is something wrong in at least one of the headers of the
methods for class Blackjack. You can tell by running the test script test blackjack.py in the
command shell.

What error do you get, and how should you fix the error? Write your answers below, and then
fix all method headers that require this correction.

2.2. Implement and test init . Implement init so that it initializes the three instance
attributes of Blackjack. For this part, you will probably want to make use of standard list
operations. For reference, look at section 5.1 in the Python library at

http://docs.python.org/2/tutorial/datastructures.html

Our solution is three lines long. Write yours here:

2.3. Enforce the preconditions for init . Notice that the init method has preconditions
for the parameter deck. You can break this precondition into three facts: deck is a list, deck

contains only Cards, and deck has at least three elements.

At least two of these are relatively easy to enforce (All three are enforceable if you are really
clever and create a helper function, as in Assignment 4). In the box below, write assert statements
that would enforce at least two of these preconditions.

2.4. Read over but don’t change score. Note the leading underscore in this method. This is
meant to be a private helper method for the class (and for you).

3

http://docs.python.org/2/tutorial/datastructures.html


2.5. Implement dealerScore() and playerScore(). You should use the private helper method
that we have provided. The syntax for getting this right might take a little getting used to, so
write down your code for dealerScore here for your instructor to take a look at:

2.6. Implement and test playerBust() and dealerBust(). Your implementation should use
dealerScore() and playerScore() as helper methods.

2.7. Implement and test str . . Note that this method is “higher up” in the file, just after
init , as is conventional. Use dealerScore() and playerScore() as helper methods.

2.8. Play some Blackjack! This last part is just for fun. Run blackjack.py as a script:

python blackjack.py

Follow the directions on the screen. The command ‘h’ is for ‘hit’, and ‘s’ is for stay.

Our dealer is following a common house protocol. As with most casinos, the dealer must continue
to hit while her hand is under 17. Once her hand reaches 17 or more, she must stay (or go bust).
See if you can use this to your advantage.

2.9. OPTIONAL CHALLENGE. You are done with the lab, but if you want an extra challenge,
you can try this. In real blackjack, aces can count as either 1 point or 11 points, depending on what
is most advantageous for the holder of the hand. The score method would have to be rewritten
to account for that.

What should a modifed score method do. Sould it return a range of possible scores for a hand?
A list of possible scores? The best possible score? How would you change your code according to
this design decision?

4


