
Required Algorithms	

Review 7	

1	

Algorithms on the Final	

•  One of these is on the final:	

§  binary search	

§  Dutch national flag	

§  partition algorithm	

§  insertion sort	

§  selection sort	

•  Will be asked to write one	

§  Have to know specifications ���

And be able to use them.	

§  Develop invariant from spec	

§  Develop the loop from inv	

•  Reasons for this:	

1.  Important algorithms.	

2.  Forces you to think in ���

terms of specifications.	

3.  Forces you do learn to

develop invariants.	

4.  Forces you to learn to use

the four loopy questions in
reading/developing a loop	

•  Answer is wrong if it	

§  Does not give the invariant	

§  Does not use the invariant	

	

2	

12/10/13	

 Review 7	

Algorithms on the Final	

•  One of these is on the final:	

§  binary search	

§  Dutch national flag	

§  partition algorithm	

§  insertion sort	

§  selection sort	

•  Will be asked to write one	

§  Have to know specifications ���

And be able to use them.	

§  Develop invariant from spec	

§  Develop the loop from inv	

•  Reasons for this:	

1.  Important algorithms.	

2.  Forces you to think in ���

terms of specifications.	

3.  Forces you do learn to

develop invariants.	

4.  Forces you to learn to use

the four loopy questions in
reading/developing a loop	

•  Answer is wrong if it	

§  Does not give the invariant	

§  Does not use the invariant	

	

3	

Hardest	

12/10/13	

 Review 7	

Horizontal Notation for Sequences	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	

b 	

0 h k

 	

h h+1

(h+1) – h = 1

 	

b <= sorted >=	

0 k len(b)

12/10/13	

 Review 7	

 4	

•  DON’T put variables directly above vertical line.���
	

§ Where is j? 	

§  Is it unknown or >= x?	

DOs and DON’Ts #3	

12/10/13	
 Review 7	
 5	

 <= x x ? >= x 	

 h i j k	

b	

Algorithm Inputs	

•  We may specify that the list in the algorithm is 	

§  b[0..len(b)-1] or 	

§  a segment b[h..k] or 	

§  a segment b[m..n-1]	

•  Work with whatever is given!	

•  Remember formula for # of values in an array segment	

§  Following – First 	

§  e.g. the number of values in b[h..k] is k+1–h.	

6	

? 	

h k	

b	

12/10/13	

 Review 7	

Binary Search	

• Vague: Look for v in sorted segment b[h..k].	

• Better:	

§ Precondition: b[h..k] is sorted (in ascending order). 	

§ Postcondition: b[h..i-1] < v and v <= b[i..k] 	

	

• Below, the sequence is in non-descending order:	

12/10/13	

 Review 7	

 7	

? 	

h k	

pre: b	

< v	

h i k	

post: b	

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half	

>= v	

< v	

h i j k	

inv: b	

 >= v	

?	

Dutch National Flag	

•  Tri-color flag represented by an list	

§  Array of 0..n-1 of red, white, blue "pixels"	

§  Arrange to put reds first, then whites, then blues 	

12/10/13	

 Review 7	

 8	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

Make the red, white, blue
sections initially empty: 	

•  Range i..i-1 has 0 elements	

•  Main reason for this trick	

Changing loop variables turns
invariant into postcondition.	

	

	

Invariants are Not Unique	

•  Invariants come from combining pre-, postconditions	

§  Often more than one way to do it (see below)	

§  Do not memorize them. Work them out on your own	

9	

binary search	

h i t k	

inv: b	

Dutch National Flag	

0 h k m n	

inv: b	

 reds 	

 ?	

 whites	

 blues	

?	

 >= v	

< v	

12/10/13	

 Review 7	

Partition Algorithm	

•  Given an segment b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

12/10/13	

 Review 7	

 10	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 1 2 3 1 3 4 5 6 8	

b	

h i k	

or	

•  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Partition Algorithm	

•  Given an segment b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

12/10/13	

 Review 7	

 11	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when h = i, j = k+1	

•  Agrees with postcondition when j = i+1 	

Insertion Sort AND Selection Sort	

12/10/13	

 Review 7	

 12	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

Insertion Sort:	

sorted, ≤ b[i..]	

0 i n	

inv: b	

 ≥ b[0..i-1]	

Selection Sort:	

First segment always	

contains smaller values	

DO have to remember	

difference between the	

two sorting invariants	

Insertion Sort vs. Selection Sort	

Insertion Sort	

 Selection Sort	

13	

2 4 4 6 6 8 9 9 7 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

 i n	

Find minimum	

2 4 4 6 6 7 5	

0 i	

2 4 4 6 6 5 7	

0 i	

2 4 4 6 5 6 7	

0 i	

2 4 4 5 6 6 7	

0 i	

12/10/13	

 Review 7	

Insertion Sort vs. Selection Sort	

Insertion Sort	

i = 0

while i < n:

 pushdown(b,i)

 i = i +1

def pushdown(b, i):

 # inv: b[j] < b[j+1..i]

 j = i

 while j > 0:

 if b[j-1] > b[j]:

 swap(b,j-1,j)

 j = j-1

	

Selection Sort	

i = 0

while i < n:

 j = minPos(b,i,n-1)

 swap(b,i,j)

 i = i+1�

def minpos(b, h, k):

 """Returns: min position in b[h..k]"""

 # inv: ???

 …

 # post: ???

14	

Invariant for
inner loop	

12/10/13	

 Review 7	

Insertion Sort vs. Selection Sort	

Insertion Sort	

i = 0

while i < n:

 pushdown(b,i)

 i = i +1

def pushdown(b, i):

 # inv: b[j] < b[j+1..i]

 j = i

 while j > 0:

 if b[j-1] > b[j]:

 swap(b,j-1,j)

 j = j-1

	

Selection Sort	

i = 0

while i < n:

 j = minPos(b,i,n-1)

 swap(b,i,j)

 i = i+1�

def minpos(b, h, k):

 """Returns: min position in b[h..k]"""

 # inv: b[x] is minimum of b[h..j]

 …

 # post: b[x] is minimum of b[h..k]

15	

Invariant for
inner loop	

12/10/13	

 Review 7	

A Word About Swap	

def swap(b, h, k):

"""Swaps b[h] and b[k] in b

Pre: b is a mutable list, h and

 k are valid positions in b. """

temp= b[h]

b[h]= b[k]

b[k]= temp

12/10/13	

 Review 7	

 16	

•  Almost all of these use
the swap() function	

§  Except for binarySearch	

•  You may or may not be
given it on the exam	

§  Should be familiar with it	

§  Very easy to write	

Dutch National Flag (Spring ‘11)	

17	

 def dutch_national_flag(b, h, k):

	

 """Use a Dutch National Flag algorithm to arrange the elements of b[h..k] and�
 produce a tuple (i, j). Precondition and postcondition are given above."""

 …

? 	

h k	

pre: b	

h i j k	

post: b	

 < 0 	

 = 0 	

 > 0 	

12/10/13	

 Review 7	

Dutch National Flag (Spring ‘11)	

18	

? 	

h k	

pre: b	

h i j k	

post: b	

 < 0 	

 = 0 	

 > 0 	

inv: b < 0 ? = 0 > 0	

h t i j k	

inv: b[h..t-1] < 0, b[t..i-1] unknown, b[i..j] = 0, and b[j+1..k] > 0

12/10/13	

 Review 7	

Dutch National Flag (Spring ‘11)	

19	

 def dutch_national_flag(b, h, k):

 """Use a Dutch National Flag algorithm to arrange the elements of b[h..k] and

 produce a tuple (i, j). Precondition and postcondition are given above."""

 t = h; j = k; i = k+1

 # inv: b[h..t-1] < 0, b[t..i-1] unknown, b[i..j] = 0, and b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b[i-1],b[t])

 t= t+1

 elif b[i-1] == 0:

 i= i-1

 else:

 swap(b[i-1],b[j])

 i= i-1; j= j-1

 return (i, j)

	

inv: b < 0 ? = 0 > 0	

h t i j k	

12/10/13	

 Review 7	

Partition Algorithm Variant	

11/20/13	

 Sequence Algorithms	

 20	

 def partition(b, n):

	

 """Partition the elements b[0..n-1] around pivot b[0]. Return position i. �
 Precondition and postcondition are given above."""

 …

? 	

0 n	

pre: b	

0 i n	

post: b	

 <= x 	

 x	

 > x 	

x	

Partition Algorithm Variant	

11/20/13	

 Sequence Algorithms	

 21	

? 	

0 n	

pre: b	

0 i n	

post: b	

 <= x 	

 x	

 > x 	

x	

inv: b < = x x ? > x	

0 i j n	

inv: b[0..i-1] <= x, b[i] = x, b[i+1..j-1] unknown, b[j..n-1] > x

Partition Algorithm Variant	

def partition(b, n):

 """Partition list b[0..n-1] around a pivot x = b[0]"""

 i = 0; j = n; x = b[0]

 # invariant: b[0..i-1] <= x, b[i] = x, b[j..n-1] > x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[0..i-1] <= x, b[i] is x, and b[i+1..n-1] > x

 return i

	

11/20/13	

 Sequence Algorithms	

 22	

inv: b < = x x ? > x	

0 i j n	

Questions?	

12/10/13	
 Review 7	
 23	

