
Classes and Subclasses	

Review 2	

	

Class Definition	

class <name>(<superclass>):

 """Class specification"""

 getters and setters

 initializer (__init__)

 definition of operators

 definition of methods

 anything else

12/8/13	

 Review 2	

 2	

 • Every class must ���
 extend something	

 • Mosts classes will���
 extended object

Class type to extend	

(may need module name)	

Attribute Invariants	

•  What are the attribute invariants below? 	

•  Why are they there? 	

class Time(object):

 """An instance is a time of day

 hr: hour of the day [int in range 0..23]

 min: minute of the hour [int in range 0..59]

 """

 …

12/8/13	

 Review 2	

 3	

Attribute Invariants	

•  Attribute invariants are important for programmer	

§  Can look at them when writing methods	

§  Any reader of the code will benefit as well	

class Time(object):

 """An instance is a time of day

 hr: hour of the day [int in range 0..23]

 min: minute of the hour [int in range 0..59]

 """

 …

12/8/13	

 Review 2	

 4	

Enforcing Invariants	

•  Attribute invariants are the purpose of constructors	

•  They initialize the attributes to satisfy invariants	

class Time(object):

 …

 def __init__(self,t):

 """Initializer: makes an instance with time t,

 in minutes, in range 0..24*60-1"""

 self.hr = t / 60

 self.min = t % 60

•  Without seeing the invariants, might write self.min = t

12/8/13	

 Review 2	

 5	

Enforcing Invariants	

•  Restrict access to fields	

§  Make fields hidden	

§  Force access through

methods: getter & setter	

•  Getter: Read attribute	

§  Just return the field	

•  Setter: Change attribute	

§  Checks that new value
satisfies the invariant	

§  If so, changes field	

class Time(object):

 """Instance Attributes:

 _hr [int in range 0..23]

 _min [int in range 0..59]"""

 …

 def getHour(self):

 """Returns: hour of the day"""

 return self._hr

 def setHour(self,value):

 """Sets hour to value"""

 assert type(value) == int

 assert value >= 0 and value <= 23

 self._hr = value�

12/8/13	

 Review 2	

 6	

Special Methods	

•  Start/end with underscores

§  __init__ for initializer

§  __str__ for str()

§  __repr__ for backquotes

•  Actually defined in object

§  You are overriding them	

§  Many more of them	

•  For a complete list, see	

http://docs.python.org/
reference/datamodel.html

class Point(object):

 """Instances are points in 3D space"""�
 …

 def __init__(self,x=0,y=0,z=0):

 """Initializer: makes new Point"""

 …

 def __str__(self):

 """Returns: string with contents""”

 …

 def __repr__(self):

 """Returns: unambiguous string""”

 …

12/8/13	

 Review 2	

 7	

Modified Question from Fall 2010	

•  An object of class Course (next slide) maintains a
course name, the instructors involved, and the list of
registered students, sometimes called the roster. 	

1.  State the purpose of an initializer. Then complete the ���

body of the initializer of Course, fulfilling this purpose.	

2.  Complete the body of method add of Course

3.  Complete the body of method __eq__ of Course. If you ���

write a loop, you do not need to give a loop invariant.	

4.  Complete the body of method __ne__ of Course.���

Your implementation should be a single line.	

12/8/13	

 Review 2	

 8	

Modified Question from Fall 2010	

class Course(object):

 """An instance is a course at Cornell.

 Maintains the name of the course, the roster

 (list of netIDs of students registered for it),

 and a list of netIDs of instructors.

 name: Course name [str]

 instructors: instructor net-ids�
 [nonempty list of string]

 roster: student net-ids

 [list of string, canbe empty]"""

 def __init__(self,name,b):

 """Instance w/ name, instructors b, no students.

 It must COPY b. Do not assign b to instructors.

 Pre: name is a string, b is a nonemepty list"""

 # IMPLEMENT ME

 def add(self,n):

 """If student with netID n is not in roster, add

 student. Do nothing if student is already there.

 Precondition: n is a valid netID."""

 # IMPLEMENT ME

 def __eq__(self,ob):

 """Return True if ob is a Course with the same

 name and same set of instructors as this;

 otherwise return False"""

 # IMPLEMENT ME

 def __ne__(self,ob):

 """Return False if ob is a Course with the same

 name and same set of instructors as this;

 otherwise return True"""

 # IMPLEMENT ME IN ONE LINE

12/8/13	

 Review 2	

 9	

Modified Question from Fall 2010	

1.  State the purpose of a initializer. Complete the body of
the constructor of Course, fulfilling this purpose.	

§  The purpose is to initialize instance attributes so that the

invariants in the class are all satisfied.	

 def __init__(self,name,b):

 """Instance w/ name, instructors b, no students.

 Pre: name is a string, b is a nonemepty list"""

 self.name = name

 self.instructors = b[:] # Copies b

 self.roster = [] # Satisfy the invariant!	

12/8/13	

 Review 2	

 10	

Modified Question from Fall 2010	

2.  Complete the body of method add of Course

 def add(self,n):

 """If student with netID n is not in roster, add

 student. Do nothing if student is already there.

 Precondition: n is a valid netID."""

 if not n in self.roster:

 self.roster.append(n)	

12/8/13	

 Review 2	

 11	

Modified Question from Fall 2010	

3.  Complete body of method __eq__ of Course. 	

 def __eq__(self,ob):

 """Return True if ob is a Course with the same name and same

 set of instructors as this; otherwise return False"""

 if not (isinstance(ob,Course)):

 return False

 # Check if instructors in ob are in this

 for inst in ob.instructors:

 if not inst in self.instructors:

 return False

 # If instructors of ob are those in self, same if length is same

 return self.name==ob.name and len(self.instructors)==len(ob.instructors)	

12/8/13	

 Review 2	

 12	

Modified Question from Fall 2010	

4.  Complete body of method __ne__ of Course.���
Your implementation should be a single line.	

 def __ne__(self,ob):

 """Return False if ob is a Course with the same name and

 same set of instructors as this; otherwise return True"""

 # IMPLEMENT ME IN ONE LINE

 return not self == ob # Calls __eq__

12/8/13	

 Review 2	

 13	

Modified Question from Fall 2010	

•  An instance of Course always has a lecture, and it may
have a set of recitation or lab sections, as does CS 1110.
Students register in the lecture and in a section (if there
are sections). For this we have two other classes:
Lecture and Section. We show only components that
are of interest for this question	

•  Do the following:	

§  Complete the constructor in class Section	

§  Complete the method add in Section	

•  Make sure invariants are enforced at all times	

12/8/13	

 Review 2	

 14	

Modified Question from Fall 2010	

class Lecture(Course):

 """Instance is a lecture, with list of sections

 seclist: sections associated with lecture.

 [list of Section; can be empty]

 """

 def __init__(self, n, ls):

 """Instance w/ name, instructors ls, no students.

 It must COPY ls. Do not assign ls to instructors.

 Pre: name is a string, ls is a nonemepty list"""

 super(Lecture,self).__init__(n,ls)

 self.seclist = []

class Section(Course):

 """Instance is a section associated w/ a lecture""”

 mainlecture: lecture this section is associated.

 [Lecture; should not be None]"""

 def __init__(self, n, ls, lec):

 """Instance w/ name, instructors ls, no

 students AND primary lecture lec.

 Pre: name a string, ls list, lec a Lecture"""

 # IMPLEMENT ME

 def add(self,n):

 """If student with netID n is not in roster of

 section, add student to this section AND the

 main lecture. Do nothing if already there.

 Precondition: n is a valid netID."""

 # IMPLEMENT ME

12/8/13	

 Review 2	

 15	

Modified Question from Fall 2010	

 def __init__(self, n, ls, lec):

 """Instance w/ name, instructors ls

 no students AND main lecture lec.

 Pre: name a string, ls list,

 lec a Lecture"""

 Course.__init__(self,n,ls)

 self.mainlecture = lec

 def add(self,n):

 """If student with netID n is not in

 roster of section, add student to

 this section AND the main lecture.

 Do nothing if already there.

 Precondition: n is a valid netID."""

 # Calls old version of add to

 # add to roster

 Course.add(self,n)

 # Add to lecture roster

 self.mainlecture.add(n)

12/8/13	

 Review 2	

 16	

Diagramming Subclasses	

12/8/13	

 17	

Review 2	

	

Important Details:	

§  Draw a line from subclass

to the parent class	

§  Do not duplicate inherited

methods and attributes 	

§  Include initializer and

operators with methods	

§  Method parameters are

always optional	

§  Class attributes are a box

with (current) value 	

superclass-name

Declared in Superclass:
 Class Attributes
 Method Names

subclass-name

Declared in Subclass:
 Class Attributes
 Method Names

Example: Class Point	

12/8/13	

 18	

Review 2	

object

__init__()

__str__()

….

Point

__init__(x=0.0,y=0.0,z=0.0)

__str__()

distanceTo()

	

	

	

	

	

	

id1

x
 0.0

Point

y
 0.0

z
 0.0

Supports the ���
default constructor	

Default str() ���
(and `) behavior	

Override original
methods in object	

Object Folder	

Class Folders	

Example: Class Point	

12/8/13	

 19	

Review 2	

object

__init__()

__str__()

….

Point

__init__(x=0.0,y=0.0,z=0.0)

__str__()

distanceTo()

	

	

	

	

	

	

id1

x
 0.0

Point

y
 0.0

z
 0.0

Because it is always
there, typically omit���
the object partition

Two Example Classes	

class A(object):

 x=3

 y=5

 def __init__(self,y):

 self.y = y

 def f(self):

 return self.g()

 def g(self):

 return self.x+self.y

class B(A):

 y=4

 z=10

 def __init__(self,x,y):

 self.x = x

 self.y = y

 def g(self):

 return self.x+self.z

 def h(self):

 return 42

Review 2	

 20	

Execute:	

>>> a = A(1)

>>> b = B(7,3)

Example from Prelim 2	

12/8/13	

 21	

Review 2	

A

__init__()

f()

g()

B

x
 3

y
 5

__init__()

h()

g()

y
 4

z
 10

	

	

	

	

	

	

id3

x
 7

B

y
 3

	

	

	

	

	

	

id2

y
 1

A

a
 id2
 b
 id3

Execute:	

>>> a = A(1)

>>> b = B(7,3)

Example from Prelim 2	

12/8/13	

 22	

Review 2	

A

__init__()

f()

g()

B

x
 3

y
 5

__init__()

h()

g()

y
 4

z
 10

	

	

	

	

	

	

id3

x
 7

B

y
 3

	

	

	

	

	

	

id2

y
 1

A

a
 id2
 b
 id3

What is…	

(1) a.y 1 (2) a.z ERROR

(3) b.x 7 (4) B.x 3

Example from Prelim 2	

12/8/13	

 23	

Review 2	

A

__init__()

f()

g()

B

x
 3

y
 5

__init__()

h()

g()

y
 4

z
 10

	

	

	

	

	

	

id3

x
 7

B

y
 3

	

	

	

	

	

	

id2

y
 1

A

a
 id2
 b
 id3

What is…	

(1) a.y 1 (2) a.z ERROR

(3) b.x 7 (4) B.x 3

Example from Prelim 2	

12/8/13	

 24	

Review 2	

A

__init__()

f()

g()

B

x
 3

y
 5

__init__()

h()

g()

y
 4

z
 10

	

	

	

	

	

	

id3

x
 7

B

y
 3

	

	

	

	

	

	

id2

y
 1

A

a
 id2
 b
 id3

What is…	

(1) a.f() 4 (2) a.h() ERROR

(3) b.f() 17 X (4) A.g(b) 17

Example from Prelim 2	

12/8/13	

 25	

Review 2	

A

__init__()

f()

g()

B

x
 3

y
 5

__init__()

h()

g()

y
 4

z
 10

	

	

	

	

	

	

id3

x
 7

B

y
 3

	

	

	

	

	

	

id2

y
 1

A

a
 id2
 b
 id3

What is…	

(1) a.f() 4 (2) a.h() ERROR

(3) b.f() 17 X (4) A.g(b) 10

