
Interfaces ���
(and More Arrays)	

Lecture 24 	
	

Announcements for This Lecture	

Material	

•  Section 12.1	

  Compare with section 4.7	

  Relevant to assignment	

•  Next week is wrap up	

  Tue: Leaving DrJava	

  Thu: Where to from here?	

•  Review sessions in 2 weeks	

  Details next week	

Assignments	

•  A6 still being graded	

  Done by Saturday	

•  Work on Assignment A7	

  Should have read by now	

  Keep track of the dates	

•  Makes it manageable	

•  Major push this weekend	

  Due Saturday after classes	

04/26/12	
 2	
Arrays & Interfaces	

Carry over from last time…	

Pascal’s Triangle	

 1 	
 	
 	
 	
 	
0	

 1 1 	
 	
 	
 	
1	

	
 	
 1 2 1 	
 	
 	
 	
2	

 1 3 3 1 	
 	
 	
 	
3	

 1 4 6 4 1 	
 	
 	
4 	

 1 5 10 10 5 1 	
 	
 	
5	

	
 	
 	
 	
 	
 	
 	
 	
… 	

•  Creating the triangle:	

  The first and last entries on each row are 1.	

  Each other entry is the sum of the two entries above it	

  Row r has r+1 values.	

04/26/12	
 Arrays & Interfaces	
 4	

Pascal’s Triangle	

 1 	
 	
 	
 	
 	
0	

 1 1 	
 	
 	
 	
1	

	
 	
 1 2 1 	
 	
 	
 	
2	

 1 3 3 1 	
 	
 	
 	
3	

 1 4 6 4 1 	
 	
 	
4 	

 1 5 10 10 5 1 	
 	
 	
5	

	
 	
 	
 	
 	
 	
 	
 	
… 	

•  Entry p[i][j] = number of ways i elements ���
can be chosen from a set of size j !	

•  p[i][j] = “i choose j” = 	

Arrays & Interfaces	
 5	

Recursive formula:���
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]	

()	
i���
j	

Pascal’s Triangle	

 1 	
 	
 	
 	
 	
0	

 1 1 	
 	
 	
 	
1	

	
 	
 1 2 1 	
 	
 	
 	
2	

 1 3 3 1 	
 	
 	
 	
3	

 1 4 6 4 1 	
 	
 	
4 	

 1 5 10 10 5 1 	
 	
 	
5	

	
 	
 	
 	
 	
 	
 	
 	
… 	

•  Binomial Theorem: Row r gives the coefficients of (x + y) r	

  (x + y)2 = 1x2 + 2xy + 1y2	

  (x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3	

  (x + y)r = ∑ (k choose r) xkyr-k ���
 0 ≤ k ≤ r	

04/26/12	
 Arrays & Interfaces	
 6	

Ragged Arrays for Pascal’s Triangle	

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 ≤ n */
public static int[][] pascalTriangle(int n) {
 int[][] b= new int[n][]; // First n rows of Pascal's triangle
 // invariant: rows 0..i-1 have been created
 for (int i = 0; i != b.length; i= i+1) {
 b[i]= new int[i+1]; // Create row i of Pascal's triangle
 b[i][0]= 1; // Calculate row i of Pascal's triangle
 // invariant b[i][0..j-1] have been created
 for (int j= 1; j < i; j= j+1) {
 b[i][j]= b[i-1][j-1] + b[i-1][j];
 }
 b[i][i]= 1;
 }
 return b;
}

7	
04/26/12	
 Arrays & Interfaces	

Summing Up a Multidimensional Array	

/** Yields: Sum of elements of b.
 * Precondition: b is an Integer or an array with base type Integer. */
public static int sum(Object b) {
 if (b instanceof Object[]) {
 Object[] bb= (Object[]) b;
 int sum= 0;
 //inv: sum = sum of b[0..k-1]
 for (int k= 0; k < bb.length; k= k+1) {
 sum= sum + sum(bb[k]);
 }
 return sum;
 }
 // { b has type Integer }
 return 0 + (Integer) b;
}

Recursive call 	

on nested array	

Base Case 	

04/26/12	
 8	
Arrays & Interfaces	

New Topic: Interfaces	

A Subclassing Example	

•  Classes for Shapes:	

  Rectangle: All angles equal	

  Rhombus: All sides same length	

  Square: All angles equal and all ���
 sides same length	

•  A square inherits from both rectangle and rhombus	

  public class Rectangle { … }
  public class Rhombus { … }
  public class Square extends Rectangle, Rhombus { … }

04/26/12	
 Arrays & Interfaces	
 10	

Rhombus
and a 	

Rectangle	

Problem: Can Only Extend One Class	

public class C1 {
 public int m() {
 return 2;
 }

 public int p() {
 return …;
 }
}

public class C2 {
 public int m() {
 return 3;
 }

 public int q() {
 return …;
 }
}

04/26/12	
 Arrays & Interfaces	
 11	

public class C extends C1, C2 { … }

Which m() ���
is inherited? 	

✗	

Problem: Can Only Extend One Class	

public abstract class C1 {
 public abstract int m();
 public abstract int p();
}

public abstract class C2 {
 public abstract int m();
 public abstract int q();
}

04/26/12	
 Arrays & Interfaces	
 12	

public class C extends C1, C2 { … }

✗	

•  This is much better	

  Method bodies are not given	

  Nothing to inherit (or confuse)	

•  But still not allowed by Java	

Java must have a
guarantee that all the
methods are abstract.	

Use an Interface	

public interface C1 {
 public int m();
 public int p();
}

public interface C2 {
 public int m();
 public int q();
}

04/26/12	
 Arrays & Interfaces	
 13	

public class C implements C1, C2 { … }

•  All methods in an interface are abstract	

  No need for “abstract” keyword	

  Technically, “public” is also redundant (and is optional)	

  Example: java.awt.event.ActionListener	

Reading Class Definitions	

public class Canine extends Animal { … }
public class Dog extends Canine

  Canines are animals. Dogs are canines.
  Dogs also can serve as companions or as guardians.

implements Companion, Guardian {…}	

dogs	
animals	
 canines	

subclasses:
nested
categories	

companions	

guardians	

interfaces:	

overlapping���
categories	

04/26/12	
 14	
Arrays & Interfaces	

Application: Generalized Sorting	

•  Sorting is general, but notion of “<” may change	

  Recommender systems sort by quality, reviews, etc.	

  Travel sites sort by price, departure, etc.	

  Also, ascending vs. descending order	

•  Do not want to write many sort procedures:	

  public void sort(int[] arr) {…}
  public void sort(double[] arr) {…}
  public void sort(Movie[] arr) {…}
  public void sort(Flight[] arr) {…}

•  What if they all had a comparison method?	

04/26/12	
 Arrays & Interfaces	
 15	

Interface java.util.Comparable 	

/** Comparable requires method compareTo*/
public interface Comparable {
 /** Yields: a negative integer if this object < c,
 * Yields: 0 if this object = c,
 * Yields: a positive integer if this object > c.
 * Throws a ClassCastException if c cannot
 * be cast to the class of this object. */
 int compareTo(Object c);
}

•  Boolean	

•  Byte	

•  Double	

•  Integer	

•  …	

•  String	

•  Calendar	

•  Time	

•  Timestamp	

•  …	

04/26/12	
 Arrays & Interfaces	
 16	

Implementing	

Classes	

abstract method: body replaced by ;	

Every class that implements Comparable must
override compareTo(Object).	

Using an Interface as a Type	

/** Swap b[i] and b[j] to put larger in b[j] */	

public static void swap(Comparable [] b, int i, int j) {	

	
if (b[j].compareTo(b[i]) < 0) {	

	
 	
Comparable temp= b[i];	

	
 	
b[i]= b[j];	

	
 	
b[j]= temp;	

	
}	

}	

public class Movie implements Comparable {	

	
String name;	

	
/** Yields -1, 0, or +1 if this Movie’s name comes alphabetically before, at, or after c. 	

	
 * Throws a ClassCastException if c cannot be cast to Movie.*/	

	
public int compareTo(Object c) {	

	
 	
return this.name.compareTo(((Movie) c).name); // String implements Comparable	

	
}	

}	

04/26/12	
 Arrays & Interfaces	
 17	

Declaring Your Own Interfaces	

/** comment */
public interface <interface-name> {
 /** method spec for function*/
 int compareTo(…);

 /** method spec for procedure */
 void doSomething(…);

 /** explanation of constant x*/
 int x= 7;

}

04/26/12	
 Arrays & Interfaces	
 18	

Use “;” instead of a body

Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Methods are implicitly public.
Can add modifier if you wish.

Class Can Implement Many Interfaces	

/** comment */
public class C implements Inter1, Inter2, Inter3{

 …
}

•  Implements three interfaces: Inter1, Inter2, and Inter3	

  Must implement methods in all of them	

•  Example: Recommendation systems	

  Need to determine similarity (Similar interface)	

  Need to sort on this similarity (Comparable interface)	

04/26/12	
 Arrays & Interfaces	
 19	

