
4/22/12	

1	

Announcements for This Lecture	

Material	

•  Section 9.1	

  Last new material for final!	

•  Section 12.1 next time	

  Relevant to assignment	

  But not on the exam	

•  Next week: wrapping up	

•  Review sessions in 2 weeks	

  Will announce next week	

Assignments	

•  A6 still being graded	

  Having to “eyeball it”	

  Will take us this week	

•  Assignment A7 now posted	

  Last assignment of semester	

  Please meet suggested dates	

•  Makes it manageable	

  Due Saturday after classes	

Prelim II: How I Lowered the Mean	

/** Yields: number of family members
 * (including profile p and his/her
 * ancestors) with given first name */
public int withName(String s) {
 int count = �

 (getName().equals(s) ? 1 : 0);�

 if (father != null) �
 count = count+father.withName(s);�

 if (mother != null) �
 count = count+mother.withName(s);

 return count;
}

•  Progress to Termination 	

  Arguments of recursive calls

must somehow get “smaller” 	

  Each call closer to base case	

John Smith III	

John Smith Jr	
 Jane Brown	

John Smith Sr	
 Rachel Evans	

Base Case	

“smaller” 	

than p	

p 	
 Instance Method	

What is Up with reveal1 in A6?	

/** Extract and return … */
public String reveal() {
 …
 int p= 4;
 String result= "";

 // inv: All hidden chars before
 // pixel p are in result[0..k-1]
 for (int k= 0; k < len; k= k+1) {
 result= result +
 (char) (getHidden(p));
 p= p+1;
 }

 return result;
}

/** Extract and return … */
public String reveal() {
 …
 int p= 4;
 char[] result= new char[len];

 // inv: All hidden chars before
 // pixel p are in result[0..k-1]
 for (int k= 0; k < len; k= k+1) {
 result[k]=
 (char) (getHidden(p));
 p= p+1;
 }

 return new String(result);
}

n2 algorithm
(n is the length

of message)

linear algorithm
(n time steps)

Try it Yourself	

Overview of Two-Dimensional Arrays	

•  Type of d is int[][] 	

 (“int array array”/ “an array of int arrays”)	

•  To declare variable d:	

 int d[][];	

•  Create a new array and assign to d:	

 d = new int[5][4]; 	

•  Initializer for two-dimensional array:	

 int[][] d = {{5,4,7,3},{4,8,9,7},{5,1,2,3},{4,1,2,9},{6,7,8,0}};	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

d	

0 1 2 3 	

0	

1	

4	

2	

3	

Overview of Two-Dimensional Arrays	

•  Access value in position at row 3, col 2:	

	
d[3][4]	

•  Access value in position at row 3, col 2:	

	
 d[3][2] = 8;	

 Some Mysterious Features	

•  An odd symmetry	

  Number of rows of d: d.length	

  Number of columns in row r of d: d[r].length	

•  Also, try toString(int[]) in the demo	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

d	

0 1 2 3 	

0	

1	

4	

2	

3	

How Multidimensial Arrays are Stored	

•  int b[][]= { {9, 6, 4}, {5, 7, 7} };	

•  b holds name of a one-dimensional array object 	

  Has b.length elements	

  Its elements are the names of 1D arrays	

•  b[i] holds the name of a one-dimensional array of ints 	

  Has length b[i].length 	

@4e0a1	

 9	

 6	

 4	

@1e3ff	

 5	

 7	

 7	

@b8d92	

@4e0a1	

@1e3ff	

 @b8d92	
 b	

9 6 4	

5 7 7	

4/22/12	

2	

Ragged Arrays: Rows w/ Different Length	

•  Declare variable b of type int[][] 	

	
int[][] b; 	

•  Create a 1-D array of length 2 and store name in b	

	
b= new int[2][] // Elements have int[] (and start as null)	

•  Create int array, store its name 	
in b[0]	

	
b[0]= new int[] {17, 13, 19}; 	

•  Create int array, store its name in b[1]	

	
b[1]= new int[] {28, 95}; 	

Ragged Arrays: Rows w/ Different Length	

@4e0a1	

 17	

 13	

 19	

@1e3ff	

 28	

 95	

@b8d92	

 @b8d92	
 b	

•  Create int array, store its name 	
in b[0]	

	
b[0]= new int[] {17, 13, 19}; 	

•  Create int array, store its name in b[1]	

	
b[1]= new int[] {28, 95}; 	

@4e0a1	

@1e3ff	

0	

1	

2	

1	
 1	

0	

0	

Aside: Image Array	

•  ImageArray used 1D array	

  Flattened version of 2D array	

  Simulated with p = r*length+c

•  Uses less memory	

  Each row a folder in 2D array	

  ImageArray uses one folder	

•  Faster to access	

  2D array needs 2 memory look-ups	

  1D array is math+memory look-up	

  Computation faster than memory	

•  But 1D is harder to use 	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

a	

0 1 2 3 	

0	

1	

4	

2	

3	

5 4 7 3 4 8 9 7 …	
b	

Pascal’s Triangle	

 1 	
 	
 	
 	
 	
0	

 1 1 	
 	
 	
 	
1	

	
 	
 1 2 1 	
 	
 	
 	
2	

 1 3 3 1 	
 	
 	
 	
3	

 1 4 6 4 1 	
 	
 	
4 	

 1 5 10 10 5 1 	
 	
 	
5	

	
 	
 	
 	
 	
 	
 	
 	
… 	

•  Entry p[i][j] = number of ways i elements ���
can be chosen from a set of size j !	

•  p[i][j] = “i choose j” = 	

Recursive formula:���
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]	

()	
i���
j	

Pascal’s Triangle	

 1 	
 	
 	
 	
 	
0	

 1 1 	
 	
 	
 	
1	

	
 	
 1 2 1 	
 	
 	
 	
2	

 1 3 3 1 	
 	
 	
 	
3	

 1 4 6 4 1 	
 	
 	
4 	

 1 5 10 10 5 1 	
 	
 	
5	

	
 	
 	
 	
 	
 	
 	
 	
… 	

•  Binomial Theorem: Row r gives the coefficients of (x + y) r	

  (x + y)2 = 1x2 + 2xy + 1y2	

  (x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3	

  (x + y)r = ∑ (k choose r) xkyr-k ���
 0 ≤ k ≤ r	

Ragged Arrays for Pascal’s Triangle	

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 ≤ n */
public static int[][] pascalTriangle(int n) {
 int[][] b= new int[n][]; // First n rows of Pascal's triangle
 // invariant: rows 0..i-1 have been created
 for (int i = 0; i != b.length; i= i+1) {
 b[i]= new int[i+1]; // Create row i of Pascal's triangle
 b[i][0]= 1; // Calculate row i of Pascal's triangle
 // invariant b[i][0..j-1] have been created
 for (int j= 1; j < i; j= j+1) {
 b[i][j]= b[i-1][j-1] + b[i-1][j];
 }
 b[i][i]= 1;
 }
 return b;
}

