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Announcements for This Lecture	


Material	


•  Section 9.1	

  Last new material for final!	


•  Section 12.1 next time	

  Relevant to assignment	

  But not on the exam	


•  Next week: wrapping up	

•  Review sessions in 2 weeks	


  Will announce next week	


Assignments	


•  A6 still being graded	

  Having to “eyeball it”	

  Will take us this week	


•  Assignment A7 now posted	

  Last assignment of semester	

  Please meet suggested dates	


•  Makes it manageable	

  Due Saturday after classes	


Prelim II: How I Lowered the Mean	

/** Yields: number of family members
  *   (including profile p and his/her 
  *   ancestors) with given first name */
public int withName(String s) {
   int count = �

   (getName().equals(s) ? 1 : 0);�

   if (father != null) �
   count = count+father.withName(s);�

    if (mother != null) �
   count = count+mother.withName(s);

    return count;
}

•  Progress to Termination 	

  Arguments of recursive calls 

must somehow get “smaller” 	

  Each call closer to base case	
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What is Up with reveal1 in A6?	

/** Extract and return … */
public String reveal() {
    … 
    int p= 4;        
    String result= "";

    // inv: All hidden chars before
    // pixel p are in result[0..k-1]
    for (int k= 0; k < len; k= k+1) {
        result= result + 
                 (char) (getHidden(p));
        p= p+1;
    }       

   return result;
}

/** Extract and return … */
public String reveal() {
    …     
    int p= 4;        
    char[] result= new char[len];

    // inv: All hidden chars before
    // pixel p are in result[0..k-1]
    for (int k= 0; k < len; k= k+1) {
        result[k]=  
                 (char) (getHidden(p));
        p= p+1;
    }    

   return new String(result);
}

n2 algorithm  
(n is the length  

of message) 

linear algorithm  
(n time steps) 

Try it Yourself	

Overview of Two-Dimensional Arrays	


•  Type of d is int[][]  	


    (“int array array”/ “an array of int arrays”)	


•  To declare variable d:	


     int d[][];	


•  Create a new array and assign to d:	


    d = new int[5][4]; 	


•  Initializer for two-dimensional array:	


    int[][] d =  {{5,4,7,3},{4,8,9,7},{5,1,2,3},{4,1,2,9},{6,7,8,0}};	
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Overview of Two-Dimensional Arrays	


•  Access value in position at row 3, col 2:	


	
d[3][4]	


•  Access value in position at row 3, col 2:	


	
 d[3][2] = 8;	


              Some Mysterious Features	


•  An odd symmetry	

  Number of rows of d:                         d.length	


  Number of columns in row r of d:  d[r].length	


•  Also, try toString(int[]) in the demo	
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How Multidimensial Arrays are Stored	


•  int b[][]= { {9, 6, 4}, {5, 7, 7} };	


•  b holds name of a one-dimensional array object 	

  Has b.length elements	

  Its elements are the names of 1D arrays	


•  b[i] holds the name of a one-dimensional array of ints 	

  Has length b[i].length  	
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Ragged Arrays: Rows w/ Different Length	


•  Declare variable b of type int[][] 	


	
int[][] b; 	


•  Create a 1-D array of length 2 and store name in b	


	
b= new int[2][]  // Elements have int[] (and start as null)	


•  Create int array, store its name 	
in b[0]	


	
b[0]= new int[] {17, 13, 19}; 	


•  Create int array, store its name in b[1]	


	
b[1]= new int[] {28,  95}; 	


Ragged Arrays: Rows w/ Different Length	
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•  Create int array, store its name 	
in b[0]	


	
b[0]= new int[] {17, 13, 19}; 	


•  Create int array, store its name in b[1]	


	
b[1]= new int[] {28,  95}; 	
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Aside: Image Array	


•  ImageArray used 1D array	

  Flattened version of 2D array	

  Simulated with p = r*length+c

•  Uses less memory	

  Each row a folder in 2D array	

  ImageArray uses one folder	


•  Faster to access	

  2D array needs 2 memory look-ups	

  1D array is math+memory look-up	

  Computation faster than memory	


•  But 1D is harder to use 	
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•  Entry p[i][j] = number of ways i elements ���
can be chosen from a set of size j !	


•  p[i][j] = “i choose j” =  	


Recursive formula:���
           for 0 < i < j,   p[i][j] = p[i–1][j–1] + p[i–1][j]	


(   )	
i���
j	
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•  Binomial Theorem: Row r gives the coefficients of (x + y) r	

  (x + y)2  =  1x2  +  2xy  +  1y2	


  (x + y)3  =  1x3  +  3x2y  +  3xy2  +  1y3	


  (x + y)r   =          ∑      (k choose r) xkyr-k ���
                     0 ≤ k ≤ r	


Ragged Arrays for Pascal’s Triangle	

/** Yields: ragged array of first n rows of Pascal’s triangle. Precondition: 0 ≤ n */
public static int[][] pascalTriangle(int n) {
      int[][] b= new int[n][];     // First n rows of Pascal's triangle
      // invariant: rows 0..i-1 have been created
      for (int i = 0; i != b.length; i=  i+1) {
            b[i]= new int[i+1];     // Create row i of Pascal's triangle
            b[i][0]=  1;                // Calculate row i of Pascal's triangle 
            // invariant b[i][0..j-1] have been created
            for (int j= 1; j < i; j= j+1) {
                  b[i][j]=  b[i-1][j-1] + b[i-1][j];
            }
            b[i][i]= 1;
      }
      return b;
}


