
4/12/12	

1	

Announcements for This Lecture	

This Week	

•  Today is an Interlude	

  Nothing today is on exam	

  Another “Big Picture” talk	

  Relevant to Assignment 6	

•  Review for exam posted	

•  New Review Session	

  Saturday evening 5pm!	

  Here in Phillips 101	

  Slides posted tomorrow	

Assignments	

•  Assignment 5 almost done	

  Should be graded by tonight	

  Grades looking okay so far	

•  Keep on Assignment 6	

  Helps with arrays (on exam)	

  Due next Thursday	

•  Extra credit:	

  It will be worth 5 points	

  Can make more than 100	

The Challenge of Making Software	

 /** Simulate vignetting (corner darkening) 	

 * characteristic of antique lenses. Darken 	

 * each pixel in the image by the factor	

 * (d / hfD)^2	

 * where d is the distance from the pixel 	

 * to the center of the image and hfD (for	

 * half diagonal) is the distance from the	

 * center of the image to the corners.	

 * The alpha component is not changed. 	

 */	

public void vignette() {	

 int rows= currentIm.getRows();	

 // FINISH ME 	

}	

•  We do a lot for you	

  Classes made ahead of time	

  Detailed specifications	

  You just “fill in blanks”	

•  The “Real World”	

  Vague specifications	

  Unknown # of classes	

  Everything from scratch	

•  Where do you start?	

•  Pattern: reusable solution to a common problem	

  Template, not a single program	

  Tells you how to design your code	

 Made by someone who ran into problem first	

•  In many cases, a pattern gives you the interface	

  List of headers for the public methods	

  Specification for these public methods	

 Only thing missing is the implementation	

Software Patterns	

Just like	

this course!	

Example Pattern: I/O Streams	

•  InputStream: Read-only list of bytes (0..255)	

  Like an array, but can only read once	

 Once you read a byte, go to the next one	

•  OutputStream: Like InputStream, but write-only	

72	
 101	
 108	
 108	
 157	
 32	
 65	
 108	
 108	
 …	

Read	

Example Pattern: I/O Streams	

	
Challenge: want I/O stream for data other than bytes	

•  Sound:	

•  General Objects	

@105dc	

x 0.0

y 0.0

getX()
setX(double)

Point2d	

double

double

getY()
setY(double)

Point2d() Point2d(double, double)

•  Text:	

•  Images	

Object stored	

as a field	

New	

Functionality	

Example Pattern: Decorators	

public class Decorator {
 private Object original;
 public void method() {
 doSomethingNew();
 original.method();
 }
}

Original	

Object	

Decorator	

Object	

Request	
 Original	

Functionality	

4/12/12	

2	

Decorators and Java I/O	

•  Java I/O works this way.	

  Start with basic Input/OutputStream	

  Determined by source (keyboard, file, etc.)	

  Add decorator for type (text, images, etc.)	

•  You did this in the lab on File I/O	

FileInputStream input = new FileInputStream(“myfile.txt”);
BufferedReader reader = new BufferedReader(input);

// Read a line of text
String line = reader.readLine()	

Architecture Patterns	

•  Essentially same idea as software pattern	

  Template showing how to organize code	

  But does not contain any code itself	

•  Only difference is scope	

  Software pattern: simple functionality	

 Architecture pattern: complete application	

•  Large part of the job of a software architect	

 Know the best patterns to use in each case	

 Use these patterns to distribute work to your team	

Model	

• 	
Defines and
	
manages the data	

• 	
Responds to the
	
controller requests	

View	

• 	
Displays model to
	
the player	

• 	
Provides interface
	
for the controller	

Controller	

• 	
Updates model in
	
response to events	

• 	
Updates view with
	
model changes	
	

Model-View-Controller Pattern	

Calls the
methods of	

View	

Model	

TemperatureConverter	
Controller	

TemperatureConverter Example	

@105dc	

farenheit

getCentigrade()

TemperatureModel	

double

setCentrigrade(double)
getFarenheit() setFarenheit(double)

32.0

Beyond Model-View-Controller	

•  MVC is best pattern for offline programs	

 Networked get more complex	

•  Client-Server	

  Client runs on your computer	

  Client connects to remoter server	

•  Three-Tier Applications	

  Client-Server-Database	

  Standard for web applications	

•  … and many others	

Client(s)	

Server(s)	

Database(s)	

You Can Even Mix and Match	

Client	
 Server	

Controller	

Model	
 View	

Controller	

Model	

