
4/9/12	

1	

Announcements for Today	

Reading	

•  Sections 8.4 – 8.6	

•  Look at Chapter 8 Exercises 	

Assignments	

•  A6: Images has been posted	

  Hardest job is reading it	

  Not too bad once understand	

  Piazza questions already	

  Due Thursday after prelim	

•  A5 is not graded yet	

  Holiday complications	

  Working on them now	

  Will be done Thursday	

•  Prelim, April 17th 7:30-9:30	

  Study guide has been posted	

  No abstract class questions	

  Exceptions, try-catch instead 	

•  Review session Thursday! 	

  Time: 7:30-9:30pm	

  Location TBA	

Binary Search	

? 	

h k	

pre: b	

<= v	

h i k	

post: b	

 > v	

<= v	

h i j k	

inv: b	

 > v	

?	

i = h-1; j = k+1;

while (i != j-1) {

}

 New statement of the ���
 invariant guarantees ���
 that we get rightmost ���
 position of v if found	

Looking at b[i+1] gives linear search from left.	

Looking at b[j-1] gives linear search from right.	

Looking at middle: b[(i+j)/2] gives binary search.	

Sorting: Arranging in Ascending Order	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

2 4 4 6 6 7 5	

0 i	

2 4 4 5 6 6 7	

0 i	

Insertion Sort:	

for (int i= 0; i < n; i= i+1) {	

 // Push b[i] down into its ���
 sorted position in b[0..i];	

}	

Insertion Sort: Moving into Position	

for (int i= 0; i < n; i= i+1) {	

 pushDown(b,i);	

} …	

public void pushDown(int[] b, ���
 int i) {	

 for(int j = i; j > 0; j = j-1) {	

 if (b[j-1] > b[j]) {	

 swap(b,j-1,j);	

 }	

 }	

}	

2 4 4 6 6 7 5	

0 i	

2 4 4 6 6 5 7	

0 i	

2 4 4 6 5 6 7	

0 i	

2 4 4 5 6 6 7	

0 i	

Shown in a previous	

lecture on arrays	

The Importance of Helper Methods	

for (int i= 0; i < n; i= i+1) {	

 pushDown(b,i);	

} …	

public void pushDown(int[] b, ���
 int i) {	

 for(int j = i; j > 0; j = j-1) {	

 if (b[j-1] > b[j]) {	

 swap(b,j-1,j);	

 }	

 }	

}	

for (int i= 0; i < n; i= i+1) {	

 for(int j = i; j > 0; j = j-1) {	

 if (b[j-1] > b[j]) {	

 int temp = b[j];	

 b[j] = b[j-1];	

 b[j-1] = temp; 	

 }	

 }	

}	

VS

Can you understand 	

all this code above?	

Insertion Sort: Performance	

/** Push value at position i into	

 * sorted position in b[0..i-1] */ 	

public void pushDown(int[] b, ���

 int i) {	

 for(int j = i; j > 0; j = j-1) {	

 if (b[j-1] > b[j]) {	

 swap(b,j-1,j);	

 }}	

}	

•  b[0..i-1]: i elements	

•  Worst case:	

  i = 0: 0 swaps	

  i = 1: 1 swap	

  i = 2: 2 swaps	

•  Pushdown is in a loop	

  Called for i in 0..n	

  i swaps each time	

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2	

Insertion sort is
an n2 algorithm	

4/9/12	

2	

Algorithm “Complexity”	

•  Given: an array of length n and a problem to solve	

•  Complexity: rough number of steps to solve worst case	

•  Suppose we can compute 1000 operations a second:	

Complexity	

 n=10	

 n=100	

 n=1000	

n	

 0.01 s	

 0.1 s	

 1 s	

n log n	

 0.016 s	

 0.32 s	

 4.79 s	

n2	

 0.1 s	

 10 s	

 16.7 m	

n3	

 1 s	

 16.7 m	

 11.6 d	

2n	

 1 s	

 4x1019 y	

 3x10290 y	

Major Topic in 2110: Beyond scope of this course	

Sorting: Changing the Invariant	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

Insertion Sort:	

for (int i= 0; i < n; i= i+1) {	

 int j= index of min of b[i..n-1];	

 swap(b,i,j);	

}	

sorted, ≤ b[i..]	

0 i n	

inv: b	

 ≥ b[0..i-1]	

Selection Sort:	

2 4 4 6 6 8 9 9 7 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

i n	

First segment always	

contains smaller values	

Selection sort also
is an n2 algorithm	

Partition Algorithm	

•  Given an array b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 1 2 3 1 3 4 5 6 8	

b	

h i k	

or	

•  x is called the pivot value	

  x is not a program variable 	

  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Sorting with Partitions	

•  Given an array b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

 x ?	

 h k	

pre: b	

 h i i+1 k	

post: b	

 x	

 >= x 	

<= x	

y	

 ?	

y	

 >= y	

<= y	

Partition Recursively	

 Recursive partitions = sorting	

  Called QuickSort (why???)	

  Popular, fast sorting technique	

QuickSort	

/** Sort the array fragment b[h..k] */	

public static void qsort(int[] b, int h, int k) {	

 if (b[h..k] has fewer than 2 elements)���
 return;	

 int j= partition(b, h, k);	

 // b[h..j–1] <= b[j] <= b[j+1..k]	

 // Sort b[h..j–1] and b[j+1..k]	

 qsort(b, h, j–1);	

 qsort(b, j+1, k);	

}	

•  Worst Case: ���
array already sorted	

  Or almost sorted	

  n2 in that case	

•  Average Case: ���
array is scrambled	

  n log n in that case	

  Best sorting time!	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Final Word About Algorithms	

•  Algorithm: 	

  Step-by-step way to do something	

 Not tied to specific language	

•  Implementation:	

 An algorithm in a specific language	

 Many times, not the “hard part”	

•  Higher Level Computer Science courses:	

 We teach advanced algorithms (pictures)	

  Implementation you learn on your own	

Array Diagrams	

Demo Code	

