Announcements for Today

Reading

Assignments

Binary Search

e Sections 8.4 — 8.6
e Look at Chapter 8 Exercises

¢ Prelim, April 17t 7:30-9:30
= Study guide has been posted
= No abstract class questions
= Exceptions, try-catch instead
* Review session Thursday!
= Time: 7:30-9:30pm
= Location TBA

¢ AG6: Images has been posted
= Hardest job is reading it
= Not too bad once understand
= Piazza questions already
= Due Thursday after prelim
* A5 is not graded yet
= Holiday complications
= Working on them now
= Will be done Thursday

h k
pre: b‘ b
- New statement of the
h ! K| invariant guarantees
post: b‘ <=v ‘ >v ‘ that we get rightmost
h i j k | position of v if found
inv: b ‘ <=v ‘ ? l >v ‘
i=h-1; j=k+1;

while (i I=j-1) {

Looking at b[i+1] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+])/2] gives binary search.

Sorting: Arranging in Ascending Order

Insertion Sort: Moving into Position

Insertion Sort:

0 n

post:b

0 i n
inv: b‘ sorted ?
for (inti=0; i<n; i=i+l) { 0 i
2446675 |
// Push b[i] down into its
sorted position in b[0..i]; 0 i

for (inti=0; i<n; i=i+l) {
pushDown(b,i);
3.
public void pushDown(int[] b,
inti) {
for(intj=1;j>0;j=j-1){
if (b[j-11>b[jD {

0

2446675

2446

(=]
(=2
2
— I'_“ I_“

0
2446567
RA

swap(b.j-1,j); Shown in a previous

}

lecture on arrays 0

2445667

4/9/12

The Importance of Helper Methods

Insertion Sort: Performance

for (inti=0; i<n; i=i+1) {
pushDown(b,i);
}..
public void pushDown(int[] b,
int i) {
for(intj=1;j>0;j=j-1){
if (b[j-11> bIjD) {
swap(b.j-1,j);
}

for (inti=0; i<n; i=i+1) {
for(intj=1i;j>0;j=j-1){
if (b[j-1]1>b[jD) {
int temp = b[j];
b[j] =bl[j-11;
b[j-1] = temp;
}

¥ Can you understand
all this code above?

/** Push value at position i into
sorted position in b[0..i-1] */
public void pushDown(int[] b,
inti) {
for(intj=1;j>0;j=j-1){
if (b[j-11>b[j]) {
swap(b,j-1,);
i3

Insertion sort
}
hm

an n? algor

* b[0..i-1]: i elements
* Worst case:
= i=0:0 swaps
= i=1:1swap
= i=2:2swaps
* Pushdown is in a loop
= Called foriin0..n
= iswaps each time

Total Swaps: 0+ 1+2+3+ ... (n-1) = (n-1)*n/2 ‘

Algorithm “Complexity”

* Given: an array of length n and a problem to solve
* Complexity: rough number of steps to solve worst case
* Suppose we can compute 1000 operations a second:

| Complexity | __n=10__|__n=100__|__n=1000 |
n

001s 0.1s Is
nlogn 0016s 0.32s 479 s
n? 0.1s 10's 16.7m
n’ Is 16.7 m 11.6d
22 Is 4x10"y 3x10*0y

Major Topic in 2110: Beyond scope of this course

Sorting: Changing the Invariant

0 n

Selection Sort:
0 i

0 n

n First segment always

inv: b sorted,<bli.] |

= b[0..i-1] ‘ contains smaller values

for (inti=0; i<n; i=i+l) {

int j= index of min of b[i..n-1];

swap(b.i);

i n
[24466[899789]

i n
[24466]799383809]

Sele sort also
is an n? algorithm

Partition Algorithm

e Given an array b[h..k] with some value x in b[h]:

h k
pre: b ‘ X l 9 ‘
* Swap elements of b[h. k] and store in j to truthify post:
h ii+l k
post: b ‘ <=xX ‘x ‘ >=xX ‘
h k
change: b|354162381
h i X ¢ x is called the pivot value
into b{121354638 = X is not a program variable

h i K = denotes value initially in b[h]

or bl123134568

Sorting with Partitions

¢ Given an array b[h. k] with some value x in b[h]:

h

k

pre: b‘x‘

e Swap elements of b[h.k] and store in j to truthify post:

h i

k

post: b [<oy [y] >y [x]

>=X ‘

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why???)
= Popular, fast sorting technique

QuickSort

/** Sort the array fragment b[h..k] */ * Worst Case:
public static void gsort(int[] b, int h, int k) { array already sorted

if (b[h..k] has fewer than 2 elements) ? Oreliesswrsd

[l 2 i
return; n® in that case

L . Average Case:
int j= partition(b, h, k); array is scrambled
// blh.j-1] <= b[j] <= b[j+1.k] = nlog n in that case

= Best sorting time!

// Sort blh..j-1] and b[j+1.k]

) h k
aworto. .- pe b [
gsort(b, j+1,Kk); h i+l k

Final Word About Algorithms

e Algorithm:

= Step-by-step way to do something
= Not tied to specific language

* Implementation:

= An algorithm in a specific language
= Many times, not the “hard part”

Array Diagrams

Demo Code

* Higher Level Computer Science courses:
= We teach advanced algorithms (pictures)

= Implementation you learn on your own

4/9/12

