Lecture 19

Designing Array Algorithms

Announcements for Today

Reading

Assignments

- A5 due tonight by Midnight
- Will grade this weekend
- Cannot give extensions
- A6 posted Tonight
- Get started immediately!
- Prelim is same week it is due
- Lab for this week \& next
- Made new lab at last minute
- Original lab is next week
- Will help with the prelim

Horizontal Notation for Arrays

Example of an assertion about an array b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (i.e. its values are in ascending order)
2. Everything in $\mathrm{b}[0 . . \mathrm{k}-1]$ is \leq everything in $\mathrm{b}[\mathrm{k} . . \mathrm{b} . l \mathrm{length}-1]$

0	h	k
b		

Given the index hof the First element of a segment and the index k of the element that Follows the segment, the number of values in the segment is $\mathrm{k}-\mathrm{h}$.

$\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$ has $\mathrm{k}-\mathrm{h}$ elements in it.

$$
(\mathrm{h}+1)-\mathrm{h}=1
$$

Developing Algorithms on Arrays

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
- The invariant is true at the beginning and at the end
- The four loopy questions (memorize them)

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does repetend make progress toward termination?
4. How does repetend keep the invariant true?

Generalizing Pre- and Postconditions

- Dutch national flag: tri-color
- Array of 0..n-1 of red, white, blue "pixels"
- Arrange to put reds first, then whites, then blues

Make the red, white, blue sections initially empty:

- Range i..i-1 has 0 elements
inv: b

- Main reason for this trick

Changing loop variables turns invariant into postcondition.

Generalizing Pre- and Postconditions

- Finding the minimum of an array.

- Put negative values before nonnegative ones.

Partition Algorithm

- Given an array $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ and store in j to truthify post:

- x is called the pivot value
- x is not a program variable
- denotes value initially in $b[h]$

Partition Algorithm

- Given an array $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

- Agrees with precondition when $\mathrm{h}=\mathrm{i}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Linear Search

- Vague: Find first occurrence of v in $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$.
- Better: Store an integer in i to truthify result condition post: post: 1. v is not in $\mathrm{b}[\mathrm{h} . \mathrm{i}-1]$

2. $\mathrm{i}=\mathrm{k}$ OR $\mathrm{v}=\mathrm{b}[\mathrm{i}]$

Linear Search

h				k
pre: b	?			
post: b	i			k
	v not here	v	?	
OR i				
				k
b	v not here			
	i			k
inv: b	v not here		?	

Linear Search

```
/**Yields: index of first occurrence of c in b[h..]
    * Precondition: c is in b[h..] */
public static int findFirst(int c, int[] b, int h) {
    // Store in i the index of the first c in b[h..]
    int i= h;
    // inv: c is not in b[h..i-1]
    while (b[i] != c) {
        i= i + 1;
    }
    // post: }\textrm{b}[\textrm{i}]==\textrm{c}\mathrm{ and }\textrm{c}\mathrm{ is not in }\textrm{b}[\textrm{h}.\textrm{i}-1
    return i;
```


Analyzing the Loop

1. Does the initialization make inv true?
2. Is post true when inv is true and condition is false?
3. Does the repetend make progress?
4. Does the repetend keep inv true?
```
\}
```


Binary Search

- Vague: Look for v in sorted array segment b[h..k].
- Better:
- Precondition: $\mathrm{b}[\mathrm{h} . \mathrm{k}-1]$ is sorted (in ascending order).
- Postcondition: $\mathrm{b}[\mathrm{h} . \mathrm{i}]<=\mathrm{v}$ and $\mathrm{v}<\mathrm{b}[\mathrm{i}+1 . . \mathrm{k}-1]$
- Below, the array is in non-descending order:

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half

Loaded Dice

- Array p of length n represents n -sided die
- Contents of p sum to 1
- $\mathrm{p}[\mathrm{k}]$ is probability die rolls the number k

1	2	3			
0.1	0.1	0.1	0.1	0.3	0.3

- Goal: Want to "roll the die"
- Generate random number r between 0 and 1
- Pick p[i] such that $\mathrm{p}[\mathrm{i}-1]<\mathrm{r} \leq \mathrm{p}[\mathrm{i}]$

0.1	0.1	0.1	0.1	0.3	0.3
0.1	0.2	0.3	0.4	0.7	1.0

Loaded Dice

- Want: Value i such that $\mathrm{p}[\mathrm{i}-1]<\mathrm{r}<=$ [i]

- Same as precondition if $\mathrm{i}=0$
- Postcondition is invariant + false loop condition

Loaded Dice

Reversing an Array

