
1	

1	

CS1110 30 March 2012. while-loops	

Reading: today: Ch. 7 and
ProgramLive sections.	

Yesterday it worked.���
Today it is not working.���
Windows is like that.	

A crash reduces ���
Your expensive computer���
To a simple stone.	

Three things are certain:���
Death, taxes, and lost data.���
Guess which has occurred?	

Haikus (5-7-5) seen on Japanese
computer monitors	

Serious error.���
All shortcuts have disappeared.���
Screen. Mind. Both are blank.	

The Web site you seek	

Cannot be located, but���
Countless more exist.	

Chaos reigns within.���
Reflect, repent, and reboot.���
Order shall return.	

2	

Beyond ranges of integers: the while loop	

while (<condition>) {	

 sequence of declarations	

 and statements	

}	

<condition>: a boolean expression	

<repetend>: sequence of statements	

In comparison with for-loops: a broader notion of “still stuff to
do” (not tied to integer ranges), but we must ensure that the
condition becomes false (since there’s no explicit increment).	

condition	
 repetend	

false	

true	

3	

Canonical while loops	

// Process b..c	

for (int k= b; k <= c; k= k+1) { 	

 Process k;	

}	

// Process b..c 	

int k= b;	

while (k <= c) {	

 Process k;	

 k= k+1;	

}	

scope of k: the loop.
k can’t be used after
the loop	

// Process b..c	

int k;	

for (k= b; k <= c; k= k+1) { 	

 Process k;	

}	
 scope of k: from its declaration to end

of block in which declaration occurs. k
can be used after the loop.	

4	

// Precondition: 1 <= n	

// Set s to the largest power of 2 that is at most n.	

	

	

	

	

	

	

	

	

	

// R: s is a power of 2 and s <= n and 2*s > n	

Example: n = 1. 20 = 1 but 21 = 2. So set s to 1.	

Example: n = 31. 24 = 16 but 25 = 32. So set s to 16.	

s= 1;	

// Keep this true: s is a power of 2 and	

// s <= n	

while (2 * s <= n) {	

 s= 2*s; // Make progress toward termination	

 // and keep assertion true 	

}	

5	

// process a sequence of input not of fixed size	

<initialization>;	

while (<still input left>) {	

 Process next item of input;	

 make ready for next item of input;	

}	

Here’s one
way to use
the while
loop:	

// Set n to number of lines in file that have “/” in them.	

String s= first line of file (null if none);	

int n= 0;	

while (s != null) {	

 if (s.contains(“/”))	

	
 	
n= n+1;	

 s= next line of file (null if none);	

}	

You will learn how to
read/write files on
your hard drive in a
few weeks 	

6	

Understanding assertions about lists	

	

	

An assertion about v and
k. It is true because chars
of v[0..3] are greater than
‘C’ and chars of v[6..8]
are ‘Z’s.	

0 1 2 3 4 5 6 7 8	

X Y Z X A C Z Z Z	
v	
 This is a list of Characters	

v ≥ C ? all Z’s k	
 6	

0 3 k 8	

v ≥ C ? all Z’s k	
 5	

0 3 k 8	

v ≥ C all Z’s k	
 6	

0 k 8	

v ≥ W A C all Z’s k	
 4	

0 k 8	

This is:	

A.  true	

B.  False	

C.  I don’t know	

2	

Set t to number of times the first
char appears at beginning of s.���
Precondition: s not empty 	

7	

these are all the same	

0 t s.length 	

s	
 t	

“bbbcgbb”	
 3	

“$b$$$”	
 1	

“hh”	
 2	
t= 1;	

while (t < s.length() &&	

 s.charAt[t] == s.charAt[t-1]) {	

 t= t + 1;	

} 	

R1:	

R2: either t = s.length or s[t] != s[t-1]	

Question: how can
we know that this
works –without
having to execute it
on several cases?	
// { R1 and R2 } i.e. the postcondition	

Set t to number of times the first
char appears at beginning of s.���
Precondition: s not empty 	

8	

all the same	

0 t s.length 	

s	
 t	

“bbbcgbb”	
 3	

“$b$$$”	
 1	

“hh”	
 2	
t= 1;	

// invariant: R1	

while (t < s.length() &&	

 s.charAt[t] == s.charAt[t-1]) {	

 t= t + 1;	

	

} 	

R1:	

R2: either t = s.length or s[t] != s[t-1]	

// { R1 and R2 } i.e. the postcondition	

Invariant will be
true before and

after each iteration	

1.  Initialization right?	

2.  Condition right?	

3.  Repetend keep

invariant true?	

4.  Repetend make

progress toward
termination?	

9	

Linear search. Character c is in String s. Find its first position.	

	

	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	
R: s c not here c ?	

0 k s.length()	

// Store in k to truthify diagram R 	
 Idea: Start at beginning of s,
looking for c; stop when found. ���
How to express as an invariant?	

 P : s c not here ?	

 0 k s.length()	

// invariant: See diagram P, below 	

k= 0;	

while () {	

	

}	

s.charAt(k) != c	

k= k + 1;	

10	

// Set c to the number of ‘e’s in String s.	

int n= s.length(); 	
 	
 	
	

k= 0; c= 0; 	
 	
 	
 	
 	

// inv: c = #. of ‘e’s in s[0..k-1] 	
	

while (k < n) { 	
	

 if (s.charAt(k) == ‘e’) 	
 	
 	
	

	
 c= c + 1; 	
 	
 	
	

 k= k+ 1; 	
 	
 	
 	
	

} 	
	

// c = number of ‘e’s in s[0..n-1]	

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.	

	

	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	

11	

We add the postcondition and
also show where the invariant
must be true:	

initialization;	

// invariant: P	

while (B) { 	

 // { P and B}	

 repetend	

 // { P }	

}	

// { P and !B }	

// { Result R }	

The four loopy questions	
Suppose we are thinking of
this while loop:	

initialization;	

while (B) { 	

 repetend	

}	

Second box helps us develop four loopy
questions for developing or understanding a
loop:	

1. How does loop start? Initialization
must truthify invariant P.	

2. When does loop stop?	

At end, P and !B are true, and these must
imply R. Find !B that satisfies ���
 P && !B => R.	

3. Make progress toward termination?
Put something in repetend to ensure this.	

4. How to keep invariant true? Put
something in repetend to ensure this. 	

12	

Roach infestation	

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/	

public static int roaches() {	

 double roachVol= .001; // Space one roach takes	

 double aptVol= 20*20*8; // Apartment volume	

 double growthRate= 1.25; // Population growth rate per week	

 	

 int w= ; // number of weeks	

 int pop= ; // roach population after w weeks	

 	

 // inv: pop = roach population after w weeks AND	

 // before week w, volume of roaches < aptVol	

 while () {	

 	

 	

 }	

 // Apartment is filled, for the first time, at week w.	

 return w;	

 }	

0	

100	

aptVol > pop * roachVol 	

w= w + 1;	

pop= (int) (pop *(1 + growthRate));	

