
Loop Design & Testing	

Lecture 16 	

	

Welcome Back from Spring Break	

Today’s Material	

•  All of Chapter 7	

  Continuing loops discussion	

  Will conclude Thursday	

•  Today’s Lab: For Loops	

  Requires that you remember

the syntax from before break	

  Also uses some of today’s

material for problem solving	

•  Class is getting easier…	

Assignments	

•  Assignment A4 now graded	

  Completion Time:	

•  Mean 6.7 hrs; Median 6 hrs	

•  Max: 30 hrs; Min: 1 hr	

  Grades:	

•  Mean 95.1, Median 100	

•  Assignment A5 posted	

  Due week from Thurs	

  Note the choice of problems	

3/27/12	

 Loop Design	

 2	

h = s * sin(60o)

600

s/3

s

s/3

s/3

s/3
(x,y)

Grisley Snowflakes	

•  Given (as shown):
  Length s
  Point (x,y)

•  Find:
  Coordinates of

all red points
•  Draw:

  Snowflakes of one
less depth and
size s/3 at those points

Today’s Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

  Can either be a comment, or a special Java command	

•  precondition: assertion placed before a statement	

  Same idea as method precondition, but more general	

•  postcondition: assertion placed after a statement	

•  loop invariant: assertion supposed to be true before

and after each iteration of the loop	

  Distinct from class (field) invariant	

•  iteration of a loop: one execution of its repetend	

3/27/12	

 Loop Design	

 4	

Today’s Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

  Can either be a comment, or a special Java command	

•  precondition: assertion placed before a statement	

  Same idea as method precondition, but more general	

•  postcondition: assertion placed after a statement	

•  loop invariant: assertion supposed to be true before

and after each iteration of the loop	

  Distinct from class (field) invariant	

•  iteration of a loop: one execution of its repetend	

3/27/12	

 Loop Design	

 5	

Gives methodology for designing loops	

Review: Assert Statements	

•  Can write and forget	

  Only used if debugging

turned on in Java	

  Otherwise, Java treats it

like a comment	

•  Code defensively!	

 /** Set worker’s last name to n 	

	

 * Precondition: n cannot be null */	

 public void setName(String n) {	

 assert n != null;	

 lname = n;	

 }	

3/8/12	

 Call Stacks	

 6	

 assert <boolean>; // Creates Exception if <boolean> false	

 assert <boolean> : <String>; // As above, but displays <String>	

Comment form
of the assertion	

Language support
for an assertion	

Assertions versus Asserts	

•  Assertions prevent bugs 	

  Help you keep track of

what you are doing	

•  Also track down bugs 	

  Make it easier to check
belief/code mismatches	

•  Do not confuse w/ asserts	

  All asserts are assertions	

  But reverse is not true	

  Cannot always convert a

comment to an assert	

	

 // x is the sum of 1..n	

3/27/12	

 Loop Design	

 7	

x	

 ?	

 n	

 3	

x	

 ?	

 n	

 0	

x	

 ?	

 n	

 1	

Comment form
of the assertion.	

Preconditions & Postconditions	

•  Precondition: assertion
placed before a segment	

•  Postcondition: assertion
placed after a segment ���

// x = sum of 1..n-1	

x = x + n;	

n = n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n

n
1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	

Meaning	

	

If precondition is true, then
postcondition will be true	

Solving a Problem	

// x = sum of 1..n	

n = n + 1;	

// x = sum of 1..n	

precondition	

postcondition	

	

What statement do you ���
put here to make the
postcondition true?	

A: x = x + 1;	

B: x = x + n;	

C: x = x + n+1;	

D: None of the above	

E: I don’t know	

Remember the new value of n	

Solving a Problem	

// x = sum of 1..n-1	

n = n + 1;	

// x = sum of 1..n-1	

precondition	

postcondition	

	

What statement do you ���
put here to make the
postcondition true?	

A: x = x + 1;	

B: x = x + n;	

C: x = x + n+1;	

D: None of the above	

E: I don’t know	

Invariants: Assertions That Do Not Change	

x = 0;
 for (int i = 2; i <= 5; i= i +1) {

 x = x + i*i;
 }
	

// x = sum of squares of 2..5 	

	

Invariant:	

	

x = sum of squares of 2..i-1	

3/27/12	

 Loop Design	

 11	

in terms of the range of integers
that have been processed so far	

i = 2;	

i <= 5	

i = i +1;	

true	

false	

x = x + i*i;	

The loop processes the range 2..5	

// invariant	

•  Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)	

Invariants: Assertions That Do Not Change	

x = 0;	

// Inv: x = sum of squares of 2..i-1	

for (int i = 2; i <= 5; i= i +1) {	

	

x = x + i*i;	

}	

// Post: x = sum of squares of 2..5 	

i = 2;	

i <= 5	

i = i +1;	

true	

false	

x = x + i*i;	

The loop processes the range 2..5	

// invariant	

x 	

 0	

i 	

 ?	

 2	

4	

3	

13	

4	

29	

5	

54	

6	

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates	

Integers that have 	

been processed:	

Range 2..i-1: 	

 2..1 (empty)	

2	

2..2 	

, 3	

2..3	

, 4	

2..4	

, 5	

2..5	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

Designing For-Loops	

// Process integers in a..b	

// inv: the integers in a..k-1 have been processed	

for (int k = a; k <= b; k = k + 1) {	

	

Process integer k;	

}	

// post: the integers in a..b have been processed	

3/27/12	

 Loop Design	

 13	

Command to do something 	

Equivalent postcondition 	

true	

init	

 cond	

k= k +1;	

false	

Process k	

invariant	

invariant	

Methodology for Making a For-Loop	

1.  Recognize that a range of integers b..c has to be processed	

2.  Write the command and equivalent postcondition	

3.  Write the basic part of the for-loop	

4.  Write loop invariant	

5.  Figure out any initialization	

6.  Implement the repetend (Process k)	

// Process b..c	

Initialize variables (if necessary) to make invariant true	

// Invariant: range b..k-1 has been processed	

for (int k= b; k <= c; k= k+1) {	

 // Process k	

}	

// Postcondition: range b..c has b	

Loop Design	

 14	

Finding an Invariant	

 // Store in b the value of : “no int in 2..n-1 divides n”	

b = true;	

// invariant: b = no int in 2..k-1 divides n	

for (int k = 2; k < n; k = k +1) {	

	

// Process k;	

	

if (n%k == 0) b = false;	

}	

// b = “no int in 2..n-1 divides n”	

What is the invariant?	

3/27/12	

 Loop Design	

 15	

1 2 3 … k-1 k k+1 … n	

Command to do something 	

Equivalent postcondition 	

Finding an Invariant	

// set x to # adjacent equal pairs in s[0..s.length()-1]	

// invariant: ???	

for (int k= 0; k < s.length(); k= k +1) {	

	

// Process k;	

}	

// x = # adjacent equal pairs in s[0..s.length()-1]	

Command to do something 	

Equivalent postcondition 	

A: 0..k	

B: 1..k	

C: 0..k–1 	

D: 1..k–1	

E: I don’t know	

A: x = no. adj. equal pairs in s[1..k]	

B: x = no. adj. equal pairs in s[0..k]	

C: x = no. adj. equal pairs in s[1..k–1]	

D: x = no. adj. equal pairs in s[0..k–1]	

E: I don’t know	

k: next integer to process.���
Which have been processed?	

 What is the invariant?	

for s = ‘ebeee’, x = 2	

Be Careful!	

// { String s has at least 1 char }	

// Set c to largest char in String s 	

// inv: 	

for (int k= ; k < s.length(); k= k + 1) {	

	

// Process k;	

}	

// c = largest char in s[0..s.length()–1] 	

1.  What is the invariant?	

2.  How do we initialize c and k?	

3/27/12	

 Loop Design	

 17	

c is largest char in s[0..k–1]	

Command to do something 	

Equivalent postcondition 	

An empty set of characters or integers has no maximum. Therefore,	

be sure that 0..k–1 is not empty. Therefore, start with k = 1.	

A: k= 0; c= s.charAt[0];	

B: k= 1; c= s.charAt[0];	

C: k= 1; c= s.charAt[1];	

D: k= 0; c= s.charAt[1];	

E: None of the above	

