
For-Loops	

Lecture 15 	

	

Announcements for This Lecture	

Today’s Material	

•  Section 2.3.8 (first use of

loops in the text)	

•  All of Chapter 7	

•  Two topics covered today	

  Elementary graphics	

  For-loops	

Assignment A4	

•  Assignment due Tonight!	

  Remember to report your
time in the comments!	

•  Rounding in assignment	

  Do not use roundTo5 in

your conversion methods	

  roundTo5 only happens in

the A4Tester and toString()	

•  New code files posted	

  A4.java, A4.jar are fixed	

3/15/12	

 For Loops	

 2	

Both used on A5	

A4: One Last Time (I Promise)	

•  Color Ranges	

  R, G, B should be 0 to 255	

  C, M, Y, K should be 0 to 100	

 H should be 0 to 360	

  S, V should be 0 to 1	

•  Files updated online	

 A4.java	

  a4.jar	

•  If you did it right, does not effect you	

3/15/12	

 For Loops	

 3	

Drawing Canvases	

•  Each pair (x,y) is a “pixel”	

  Position you give a color to	

•  For A5, understand that 	

  x-coords increase to right	

  y-coords increase down	

•  GUIs often treat window
interior as a canvas	

  Buttons, etc. drawn there	

  Or custom graphics ���

(e.g. games)	

3/15/12	

 For Loops	

 4	

 (0,0) (1,0) (2,0) …	

 (0,1) (1,1) (2,1) …	

 (0,2) (1,2) (2,2) …	

 …	

“canvas” in which ���
you can draw	

ACM Graphics Package	

•  Have a lot of code for A5	

  To many to give you

individual .java files	

  Instead packaged as .jar	

•  Many roles of .jar files	

  Self-contained application	

  Compile classes to include

in your application	

•  Will use ACM graphics	

  Group of Java GUI classes
designed for beginners	

3/15/12	

 For Loops	

 5	

Use this to add a ���
.jar file to DrJava	

Graphics Programs with ACM Package 	

import acm.graphics.*;

import java.awt.*;

import acm.program.*;

/** An instance maintains graphics �
 * window on the monitor */

public class GDemo extends �
 GraphicsProgram {

 /** Constructor: an instance with�
 * canvas of size (500, 500) */ �
 public GDemo() {

 super();

 start(sizeArgs);

 }

 …

}

3/15/12	

 For Loops	

 6	

Usage Examples	

•  Creating a turtle	

  GDemo demo = new GDemo();

  GTurtle t = demo.getTurtle();

•  Drawing with the turtle	

  t.forward(200);

  t.left(125);

  t.forward(250);

•  Can also draw w/ pen	

A5: Drawing with the Turtle	

•  Features of class GTurtle	

•  point (x, y): where the “Turtle” is	

•  angle: direction the Turtle faces 	

•  color: the Turtle pen color	

•  whether the pen is up or down.	

•  Draw equilateral triangle:	

  t.forward(30); t.left(120);	

  t.forward(30); t.left(120);	

  t.forward(30); t.left(120);	

•  Use all of this in A5	

  Draw spirals and shapes	

  Most procedures will be

recursive in some way	

3/15/12	

 For Loops	

 7	

0 degrees	

east	

North	

90 degrees	

180 degrees	

west	

270 degrees	

Important Concept in CS:���
Doing Things Repeatedly	

1.  Perform n trials or get n samples.	

•  A5: draw a triangle six times to make a hexagon	

•  Run a protein-folding simulation for 106 time steps	

2.  Process each item in a String, Vector, or “list”	

•  Compute aggregate statistics for a dataset, such as the mean,

median, standard deviation, etc.	

•  Send everyone in a Facebook group an appointment time	

3.  Do something an unknown  
number of times	

•  CUAUV team, vehicle keeps ���

moving until reached its goal 
3/15/12	

 For Loops	

 8	

From Recursion to Loops	

•  Recursion can do all this	

  Do something	

  Call method to do again	

  But how do you stop?	

•  Iteration is an alternative	

  while-loops 	

  for-loops 	

<set things up>;	

while (stuff still to do) {

	

<process current item>; 	

	

<prepare for next item>;	

}

3/15/12	

 For Loops	

 9	

	

Recursion can do anything iteration can, and vice versa	

  Some problems easier with recursion, other with iteration	

  You will understand which more as you gain experience	

For Loops: Processing Ranges of Integers	

	

int x;���
x= 0;	

	

// add the squares of ints ���
// in range 2..200 to x���
x= x + 2*2;���
x= x + 3*3;���
…���
x= x + 200*200;	

•  For each number i in the
range 2..200, add i*i to x	

The for-loop:	

 for (int i= 2; i <= 200; i= i +1) {�
 x= x + i*i;�
}

•  loop counter: i	

•  initialization: int i = 2;	

•  loop condition: i <= 200;	

•  increment: i= i + 1	

•  repetend: { x= x + i*i; }	

  Also called the body	

3/15/12	

 For Loops	

 10	

For Loops: Processing Ranges of Integers	

	

The for-loop:	

 for (int i= 2; i <= 200; i= i +1) {�
 x= x + i*i;�
}

	

loop counter: i���
initialization: int i = 2;���
loop condition: i <= 200;���
increment: i= i + 1���
repetend: { x= x + i*i; }	

3/15/12	

i= 2;	

i <= 200	

i= i +1;	

true	

false	

x= x + i*i;	

To execute the for-loop.	

1.  Execute initialization.	

2.  If loop condition false,

terminate execution.	

3.  Execute repetend.	

4.  Execute increment, repeat

from step 2.	

Note on Ranges	

•  m..n is a range containing n+1-m values	

  2..5 contains 2, 3, 4, 5. 	

Contains 5+1 – 2 = 4 values	

  2..4 contains 2, 3, 4. 	

 	

Contains 4+1 – 2 = 3 values 	

  2..3 contains 2, 3. 	

 	

Contains 3+1 – 2 = 2 values	

  2..2 contains 2. 	

 	

Contains 2+1 – 2 = 1 values	

  2..1 contains ???	

3/15/12	

 For Loops	

 12	

A: nothing	

B: 2,1	

C: 1	

D: 2	

E: something else	

What does 2..1 contain?	

Note on Ranges	

•  m..n is a range containing n+1-m values	

  2..5 contains 2, 3, 4, 5. 	

Contains 5+1 – 2 = 4 values	

  2..4 contains 2, 3, 4. 	

 	

Contains 4+1 – 2 = 3 values 	

  2..3 contains 2, 3. 	

 	

Contains 3+1 – 2 = 2 values	

  2..2 contains 2. 	

 	

Contains 2+1 – 2 = 1 values	

  2..1 contains ???	

•  The notation m..n, always implies that m <= n+1	

  So you can assume that even if we do not say it	

  If m = n+1, the range has 0 values	

3/15/12	

 For Loops	

 13	

Application: URL Analysis for Search Engines	

•  How does Google rank its web pages?	

  (Part of the Answer): Use clues from the URL	

•  “Deep” URLs are usually less important	

  Example:

www.fake.com/this/that/other/minor/tiny/detail.htm	

  Count number of slashes in URL (given as String s)	

3/15/12	

 For Loops	

 14	

A: chars 1..s.length()	

B: chars 0..s.length()	

C: chars 1..s.length()-1	

D: chars 0..s.length()-1	

E: something else	

Which characters of s do
we have to look at?	

Application: URL Analysis for Search Engines	

•  How does Google rank its web pages?	

  (Part of the Answer): Use clues from the URL	

•  “Deep” URLs are usually less important	

  Example:

www.fake.com/this/that/other/minor/tiny/detail.htm	

  Count number of slashes in URL (given as String s)	

•  We need a loop to count number of ‘/’ in String s	

  so we need a loop to look at s[0], ..., s[s.length()-1]	

  so we need a loop to process integers in 0..s.length()-1	

3/15/12	

 For Loops	

 15	

Patterns for Processing Integers	

range a..b-1	

for (int i= a; i < b; i= i + 1) {

	

Process integer i;	

}

// store in count # of '/'s in String s

// inv: count is # of '/'s in s[0..i-1]

count= 0;

for (int i= 0; i < s.length(); i= i +1) {

 if (s.charAt(i) == '/')

 { count= count+1; }

}

// count is # of '/'s in s[0..s.length()-1]

range c..d	

for (int i= c; i <= d; i= i + 1) {

	

Process integer i;	

}

// Store in double var. v the sum

// 1/1 + 1/2 + …+ 1/n

v= 0; // call this 1/0 for today

// inv: v is 1/1 + 1/2 + …+ 1/(i-1)

for (int i= 1; i <= n; i= i +1) {

v= v + 1.0 / i;

}

// v= 1/1 + 1/2 + …+ 1/n

3/15/12	

 For Loops	

 16	

Some For-Loop Exercises	

1.  Set c to number of chars in String s that are digits.	

2.  Store in result a copy of String s but with no blanks.	

3.  Store in result a copy of String s but with adjacent

duplicates removed.	

4.  Set boolean v to the value of the statement ���

“no integer in 2..n–1 divides n”.	

5.  Set boolean v to the value of “every item in

Vector<Object> v is an instance of String”.	

6.  Add up squares of odd integers in the range m..n.	

3/15/12	

 For Loops	

 17	

