
3/12/12	

1	

Announcements for This Lecture	

Prelim	

 Assignments	

•  A4 due Thursday	

  Do not wait until last minute	

  Remember to report your

time in the comments!	

  Graded when you get back	

•  A5 posted Thursday	

  Have 1.5 weeks after ���

Spring Break to do it	

  Welcome, but not expected,

to do it over the break	

•  Generally grades are good	

  Mean: 80, Median 84	

  Similar to last semester	

  62 is (probably) C- and below	

•  In Upson 360 by Thursday	

  Check that grade is in CMS!	

Reading Today	

•  Chapter 10 (in entirety)	

Exceptional Circumstances	

/** Yields: the decimal number represented by s. */

int parseInt(String s) { … }

•  …but what if s is “bubble gum”?	

/** Yields: the decimal number represented by s, or –1

 * if s does not contain a decimal number. */

•  …but what if s is “–1”?	

/** Yields: the decimal number represented by s

 * Precondition: s contains a decimal number. */

•  …but what if s might not, sometimes?	

•  Somehow, we have to be able to deal with the unexpected case	

Dealing with Exceptional Circumstances	

/** Yields: the decimal number

 * represented by s.

 * Pre: s contains a number. */

int parseInt(String s) { … }

/** Yields: “s contains a number.” */

boolean parseableAsInt(String s) { … }

•  Now we have to write:	

if (parseableAsInt(someString)) {

 i = parseInt(someString);

} else {

 // do something about the error

}

•  How to read a number from a file ���
(in 14 easy steps):	

1.  Open the file	

2.  If the file doesn’t exist, …	

3.  If there was a disk error, …	

4.  Read a line from the file.	

5.  If the file was empty, …	

6.  If there was a disk error, …	

7.  Convert string to a number.	

8.  If the string is not a number, …	

9.  If we have run out of memory, …	

10.  Close the file.	

11.  If there was a disk error, …	

12.  If t	

13.  If t	

14.  If t	

Common Outcome	

Weary programmers write
code that ignores errors.	

There has to be a better way!	

Exception Handling	

/** Parse s as a signed decimal integer.

 * Yields: the integer parsed

 * Throws: NumberFormatException is s not a number */

public static int parseInt(String s) …

•  What happens when parseInt finds an error?	

  Does not know what caused the error 	

  Cannot do anything intelligent about it.	

  “throws the exception” to the calling method	

  The normal execution sequence stops!	

Recovering from Exceptions	

•  try-catch blocks allow us to recover from errors	

  Do the code that is the try-block	

  Once an exception occurs, jump to the catch	

•  Example:	

try {

i = Integer.parseInt(someString);

System.out.println(“The number is: ” + i);

} catch (NumberFormatException nfe) {

System.out.println(“Hey! That is not a number!”)

}

might throw a NumberFormatException	

tells Java to handle N.F.E.s here	

executes if the exception happens	

Exceptions in Java	

Throwable

RuntimeException

ArithmeticException

Exception
 Error

problems you
might want���
to deal with	

problems you
probably can’t	

fix anyway	

•  Exceptions are instances of class Throwable	

•  This allows us to organized them in a hierarchy	

@105dc	

Exception	

Throwable()
getMessage()

Throwable	

“/ by zero”

Exception() Exception(String)	

Throwable(String)	

Runtime…() Run…(String)	

Arith…() Arith…(String)	

RuntimeException	

ArithmeticException	

3/12/12	

2	

Exceptions and the Call Stack	

•  Call:

Ex.first();	

•  Output:

ArithmeticException: / by zero

 at Ex.third(Ex.java:13)

 at Ex.second(Ex.java:9)

 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */

03 public class Ex {

04 public static void first() {

05 second();

06 }

07

08 public static void second() {

09 third();

10 }

11

12 public static void third() {

13 int x = 5 / 0;

14 }

15 }

@4e0a1	

“/ by zero”

ArithmeticException	

Exceptions and the Call Stack	

•  Call:

Ex.first();	

•  Output:

ArithmeticException: I threw it

 at Ex.third(Ex.java:13)

 at Ex.second(Ex.java:9)

 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */

03 public class Ex {

04 public static void first() {

05 second();

06 }

07

08 public static void second() {

09 third();

10 }

11

12 public static void third() {

13 throw new ArithmeticException (“I threw it”);

14 }

15 }

@4e0a1	

“I threw it”

ArithmeticException	

Creating Your Own Exceptions	

/** An instance is an exception */

public class OurException extends Exception {

 /** Constructor: an instance with message m*/

 public OurException(String m) {

 super(m);

 }

 /** Constructor: an instance with no message */

 public OurException() {

 super();

 }

}

This is all you need	

  No extra fields	

  No extra methods	

  Just the constructors	

throws and Checked Exceptions	

•  Call:

Ex.first();	

•  Output:

OurException: Whoa!

 at Ex.third(Ex.java:13)

 at Ex.second(Ex.java:9)

 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */

03 public class Ex {

04 public static void first() {

05 second();

06 }

07

08 public static void second() {

09 third();

10 }

11

12 public static void third() {

13 throw new OurException(“Whoa!”);

14 }

15 }

Will not
compile yet!	

throws OurException {	

throws OurException {	

throws OurException {	

throws clauses are required
because OurException,
unlike ArithmeticException,
is a “checked exception.”	

Exception Hierarchy	

Throwable

RuntimeException

Exception

Error

problems you
might want���
to deal with	

problems you
probably cannot	

deal with anyway	

IOError
 AssertionError
 …

ArithmeticE.
 ClassCastE.

IndexOutOfBoundsE.

FileNotFoundE.

EndOfFileE.

UnsupportedAudioFileE.

problems you can prevent
by coding properly	

unchecked	

exceptions	

checked	

exceptions	

… (all others) …	

…

throws and Checked Exceptions	

public class Ex {

 public static void first() {

 try {

 second();

 } catch (OurException ae) {

 System.out.println(“Caught it: ” + ae);

 }

 System.out.println(“Procedure first done.”);

 }

 public static void second() throws OurException {

 third();

 }

 public static void third() throws OurException {

 throw new OurException(“an error”);

 }

}

•  throws is needed if	

  The method itself throws

checked exception	

  The method calls a
method that throws a
checked exception	

•  throws is not needed if	

  All checked exceptions

are caught	

  Any uncaught exceptions
are unchecked exceptions	

