
3/12/12	

1	

Announcements for This Lecture	

Prelim	
 Assignments	

•  A4 due Thursday	

  Do not wait until last minute	

  Remember to report your

time in the comments!	

  Graded when you get back	

•  A5 posted Thursday	

  Have 1.5 weeks after ���

Spring Break to do it	

  Welcome, but not expected,

to do it over the break	

•  Generally grades are good	

  Mean: 80, Median 84	

  Similar to last semester	

  62 is (probably) C- and below	

•  In Upson 360 by Thursday	

  Check that grade is in CMS!	

Reading Today	

•  Chapter 10 (in entirety)	

Exceptional Circumstances	

/** Yields: the decimal number represented by s. */
int parseInt(String s) { … }
•  …but what if s is “bubble gum”?	

/** Yields: the decimal number represented by s, or –1
 * if s does not contain a decimal number. */
•  …but what if s is “–1”?	

/** Yields: the decimal number represented by s
 * Precondition: s contains a decimal number. */
•  …but what if s might not, sometimes?	

•  Somehow, we have to be able to deal with the unexpected case	

Dealing with Exceptional Circumstances	

/** Yields: the decimal number
 * represented by s.
 * Pre: s contains a number. */
int parseInt(String s) { … }

/** Yields: “s contains a number.” */
boolean parseableAsInt(String s) { … }

•  Now we have to write:	

if (parseableAsInt(someString)) {
 i = parseInt(someString);
} else {
 // do something about the error
}

•  How to read a number from a file ���
(in 14 easy steps):	

1.  Open the file	

2.  If the file doesn’t exist, …	

3.  If there was a disk error, …	

4.  Read a line from the file.	

5.  If the file was empty, …	

6.  If there was a disk error, …	

7.  Convert string to a number.	

8.  If the string is not a number, …	

9.  If we have run out of memory, …	

10.  Close the file.	

11.  If there was a disk error, …	

12.  If t	

13.  If t	

14.  If t	

Common Outcome	

Weary programmers write
code that ignores errors.	

There has to be a better way!	

Exception Handling	

/** Parse s as a signed decimal integer.
 * Yields: the integer parsed
 * Throws: NumberFormatException is s not a number */
public static int parseInt(String s) …

•  What happens when parseInt finds an error?	

  Does not know what caused the error 	

  Cannot do anything intelligent about it.	

  “throws the exception” to the calling method	

  The normal execution sequence stops!	

Recovering from Exceptions	

•  try-catch blocks allow us to recover from errors	

  Do the code that is the try-block	

  Once an exception occurs, jump to the catch	

•  Example:	

try {
i = Integer.parseInt(someString);
System.out.println(“The number is: ” + i);

} catch (NumberFormatException nfe) {
System.out.println(“Hey! That is not a number!”)

}

might throw a NumberFormatException	

tells Java to handle N.F.E.s here	

executes if the exception happens	

Exceptions in Java	

Throwable

RuntimeException

ArithmeticException

Exception Error

problems you
might want���
to deal with	

problems you
probably can’t	

fix anyway	

•  Exceptions are instances of class Throwable	

•  This allows us to organized them in a hierarchy	
@105dc	

Exception	

Throwable()
getMessage()

Throwable	

“/ by zero”

Exception() Exception(String)	

Throwable(String)	

Runtime…() Run…(String)	

Arith…() Arith…(String)	

RuntimeException	

ArithmeticException	

3/12/12	

2	

Exceptions and the Call Stack	

•  Call:
Ex.first();	

•  Output:
ArithmeticException: / by zero
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 int x = 5 / 0;
14 }
15 }

@4e0a1	

“/ by zero”

ArithmeticException	

Exceptions and the Call Stack	

•  Call:
Ex.first();	

•  Output:
ArithmeticException: I threw it
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 throw new ArithmeticException (“I threw it”);
14 }
15 }

@4e0a1	

“I threw it”

ArithmeticException	

Creating Your Own Exceptions	

/** An instance is an exception */
public class OurException extends Exception {

 /** Constructor: an instance with message m*/
 public OurException(String m) {
 super(m);
 }

 /** Constructor: an instance with no message */
 public OurException() {
 super();
 }
}

This is all you need	

  No extra fields	

  No extra methods	

  Just the constructors	

throws and Checked Exceptions	

•  Call:
Ex.first();	

•  Output:
OurException: Whoa!
 at Ex.third(Ex.java:13)
 at Ex.second(Ex.java:9)
 at Ex.first(Ex.java:5)

02 /** Illustrate exception handling */
03 public class Ex {
04 public static void first() {
05 second();
06 }
07
08 public static void second() {
09 third();
10 }
11
12 public static void third() {
13 throw new OurException(“Whoa!”);
14 }
15 }

Will not
compile yet!	

throws OurException {	

throws OurException {	

throws OurException {	
throws clauses are required
because OurException,
unlike ArithmeticException,
is a “checked exception.”	

Exception Hierarchy	

Throwable

RuntimeException

Exception
Error

problems you
might want���
to deal with	

problems you
probably cannot	

deal with anyway	

IOError AssertionError …

ArithmeticE. ClassCastE.
IndexOutOfBoundsE.

FileNotFoundE.

EndOfFileE.

UnsupportedAudioFileE.

problems you can prevent
by coding properly	

unchecked	

exceptions	

checked	

exceptions	

… (all others) …	

…

throws and Checked Exceptions	

public class Ex {
 public static void first() {
 try {
 second();
 } catch (OurException ae) {
 System.out.println(“Caught it: ” + ae);
 }
 System.out.println(“Procedure first done.”);
 }
 public static void second() throws OurException {
 third();
 }
 public static void third() throws OurException {
 throw new OurException(“an error”);
 }
}

•  throws is needed if	

  The method itself throws

checked exception	

  The method calls a
method that throws a
checked exception	

•  throws is not needed if	

  All checked exceptions

are caught	

  Any uncaught exceptions
are unchecked exceptions	

