Announcements for This Lecture

Example: Reversing a String

Recursion Prelim 1

e Read: 15.1,p. 415
* PLive, activity 15-2.1
* Work on many exercises
= Today’s (& Wed) lab
* Remember you need
= Good function specification

e Thursday 7:30-9pm
= Abel-Price (Upson B17)
= Rabbit-Teo (Upson 111)
= Ting—Zytariuk (Upson 109)

¢ Graded late Thursday
= Will have grade Fri morn

= Base case(s) are correct * In time for drop day

= Progress toward termination Make-up, Friday 4:30

= Recursive case(s) are correct = For preapproved students

Precise Specification:
= Yield: reverse of String s

e[]o]]

¢ Solving with recursion i
= Suppose we could reverse 'u"!.
a smaller string H

(e.g. less one character)
= Can we use that solution H"Hn
to reverse whole string?
* Often easy to understand 3
first without Java

= Then sit down and code

Example: Reversing a String

Example: Palindromes

/** Yields: reverse of string s */

[o]]
if (s.length() == 0) {
return s; 3
} Lol [r]e]
1. Precise specification?

/I {s is not empty}
/I (reverse of s[1..])+s[0]
2. Base case: correct?
3. Recursive case:
progress to termination?
4. Recursive case: correct?

public static String reverse(String s) {

return reverse(s.substring(1)) +
s.charAt(0);

R S

String with = 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

Example:

— have to be the same

has to be a palindrome
Precise Specification:
/#* Yields: “s is a palindrome” */
public static boolean isPalindrome(String s)

Example: Palindromes

Example: More Palindromes

e String with = 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

¢ Recursive Method: Recursive
Definition

/% Yields: “s is a palindrome” */
public static boolean isPalindrome(String s) {

if (s.length() <= 1) { return true; }

/I { s has at least two characters }

return s.charAt(0) == s.charAt(s.length()-1) &&

isPalindrome(s.substring(1, s.length()-1));

/% Yields: “s is a palindrome”.
“| Case of characters and punctuation is ignored. | */
public static boolean isPalindrome3(String s) {

return isPalindrome2(depunct(s));

) Use helper methods!

* Often easy to break a
/** Yields: s with the punctuation removed problem into two

public static String depunct(String s) {
if (s.length() == 0) { returns; }

« Can use recursion more
than once to solve

// {s is not empty}

if (!Character.isLetter(s.charAt(0))) { return depunct(s.substring(1)); }
// {s is not empty and s[0] is not punctuation}

return s.charAt(0) + depunct (s.substring(1)):

3/5/12

How to Break Up a Recursive Method?

/** Yields: String with commas every 3 digits
Precondition: s represents a non-negative int
* e.g.commafy(“5341267”) = “5,341,267” */
public static String commafy(String s)

Approach 1 Approach 2

341267 267

5341
commafy commafy
[]

[]

How to Break Up a Recursive Solution?

/** Yields: String with commas every 3 digits
Precondition: s represents a non-negative int
* e.g. commafy(“5341267”) = “5,341,267” */
public static String commafy(String s) {
/I No commas if too few digits.
if (s.length() <= 3) { return s; }
// Add the comma before last 3 digits
return commafy(s.substring(0,s.length()-3)) + <. +

s.substring(s.length()-3);

How to Break Up a Recursive Method?

/** Yields: be
* Precondition: ¢ =0 */
public static double exp(double b, int ¢)

Approach 1 Approach 2

122 = 12 x (1229

b =Db x (b

12256 = () X

bc = (bC/Z) X (bc-c/Z)

b
Raising a Number to an Exponent
/#% Yields: be C # of calls
* Precondition: ¢ = 0 */ 0 0
public static double exp(double b, int ¢) { 1 1
// blis 1 5 5
if (c==0){ 4 3
return 1;
) 8 4
16 5
16 = (ei2) 32 6
int mid = ¢/2; 2" n+1

return exp(b,mid)*exp(b.c-mid);

32768 is 215
b32768 needs only 16 calls!

Hilbert’s Space Filling Curve

o Hilbert(1):]_]
Hilbert(2):
on
Hilbert(n): H(n-1) H(n-1)
down down
— = s
JANEL,

Hilbert’s Space Filling Curve

¢ Given a box
e Draw 2"x2"
i
SphE

Basic Idea

grid in box

e Trace the curve
e Asn->oo,
curve fills box

3/5/12

