
Subclasses &���
Inheritance	

Lecture 9	
	

Announcements for This Lecture	

Readings	

•  Section 1.6, 4.1 (today)	

•  Section 4.2 (Thursday)	

Announcements	

•  Assignment 1 Resubmissions	

  Want “final version” tonight	

  But keep doing until get a 10	

•  Assignment 2 at end of class	

•  Assignment 3 is now posted	

  Due next Tuesday to CMS	

  Even if still working on A1	

  Keep A1, A3 in separate folders	

•  It calms down after this…	

•  Prelim, March 8th 7:30-9:30	

  Material up to next Tuesday	

  Sample prelims from past ���

years on course web page	

•  Conflict with Prelim time?	

  Submit to Prelim 1 Conflict
assignment on CMS	

  Do not submit if no conflict	

2/21/12	
 2	
Subclasses & Inheritance	

Constructors are Instance Methods	

1.  Make a new object (folder)	

  Java gives the folder a name	

  All fields are default (0 or null)	

2.  Draw a frame for the call	

3.  Assign the argument value to

the parameter (in frame)	

4.  Execute the method body	

  Look for variables in the frame	

  Execute statements to initialize ���

the fields to non-default values	

  Give the name of folder as the result	

5.  Erase the frame for the call	

2/21/12	
 3	

public Point3d(
double x0,	

	
 	
double y0,	

	
 	
double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

Point3d:	
 @3e9cff	

x0	

y0	

z0	

1	

Frame for	

Constructor	

Scope	

Subclasses & Inheritance	

Example: p = new Point3d(1.0, 2.2, 3.3); 	

2/21/12	
 4	

public Point3d(
double x0,	

	
 	
double y0,	

	
 	
double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

}	

p	

Point3d	

Point3d	

x	
 0.0	

@3e9cff	

…

y	
 0.0	

z	
 0.0	

Point3d:	
 @3e9cff	

x0	

y0	

z0	

1.0	
✗	

2.2	

3.3	

✗	

✗	

@3e9cff	

1.0	

2.2	

3.3	

1	
3	
2	

Subclasses & Inheritance	

A Interesting Challenge	

•  How do we add new methods to AcornProfile?	

 Open up the .java file and add them!	

•  Java has a lot “built-in” classes	

  Examples: String, Vector, JFrame	

•  What if we want to add methods to these?	

 We cannot access the .java file (where is it???)	

•  But we can create a subclass	

 A new class with all fields, methods of the “parent”	

  Class also contains anything new we want to add	

2/21/12	
 5	
Subclasses & Inheritance	

Subclasses in the Java API	

•  Subclassing creates a
hierarchy of classes	

  Subclass has a super class ���

or “parent” class	

  That parent may have a

super class as well	

•  Explicit in the Java API	

  API does not respecify
inherited methods	

  Often have to go to super
class for specification	

Package	

Class	

Super class	

Super super class	

2/21/12	
 6	
Subclasses & Inheritance	

Class Definition REVISITED	

•  Describes the format of a folder (instance, object) of the class.	

	
/** ���
 * Description of what the class is for���
 */���
public class <class-name> extends <super-class> {	

	
 	
declarations of fields and methods (in any order) ���
}	

•  Class <class-name> has all methods and fields of its parent	

  We say that it inherits them	

•  Also has any new fields or methods declared inside of it	

2/21/12	
 Subclasses & Inheritance	
 7	

Folder Analogy and Subclasses	

superclass-name	

fields declared inside ���
<superclass-name>	

@3e9cff	

methods declared inside ���
<superclass-name>	

subclass-name	

fields declared inside ���
<subclass-name>	

methods declared inside ���
<subclass-name>	

folder (object) belongs ���
in file drawer for class	

subclass-name	

2/21/12	
 8	
Subclasses & Inheritance	

Subclassing a JFrame	

/** Description of what the class is for… */	

public class SquareJFrame extends JFrame {	

	
/** Set the height of the window to the width */	

	
public void setHeightToWidth() {	

	
 	
setSize(getWidth(),getWidth()); 	
 	
	

	
}	

	
/** Yields: the area of the window */	

	
public int area() {	

	
 	
return getWidth()*getHeight();	

	
}	

	
…	

}	

folder (object) belongs ���
in file drawer for class	

SquareJFrame	

Inherited method ���
which is used as ���
a helper method	

9	
Subclasses & Inheritance	

Object: The Superest Class of All	

•  How does toString() work?	

  All classes have a toString() by default	

  Default string is the folder name	

  Defining toString() in subclass overrides this method	

•  Java Feature: Every class that does not extend another
class automatically extends class Object. 	

	
 	
public class C { … }	

	
 	
public class C extends Object { …}	

2/21/12	
 10	
Subclasses & Inheritance	

Object: The Superest Class of All	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

equals(Object)

…

toString()

Object	

So this… is really this.	

2/21/12	
 11	

Object: The Superest Class of All	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

equals(Object)

…

toString()

Object	

So this… is really this.	

	
Because it is always there, to  
	avoid clutter, we don’t generally 
	draw the partition for the Object���
	
superclass in our diagrams 

2/21/12	
 12	

The Bottom-Up Rule	

•  Which toString() is called?	

  Work the way up from the

bottom of the folder.	

  Find the first method header

that matches	

  Use the definition from

the .java file for that class	

•  New method definitions

override those of super class	

2/21/12	
 13	

@105dc	

x 0.0

y 0.0

getX()

…

double

double

Point2d()

Point2d	

…
toString()

Object	

toString()

Keywords this and super!

this!

•  Refers to the object name in
scope box of the method call	

•  this.<field> is field in object	

  Example: this.x	

•  this.<method-call> calls a
method in this object	

  Example: this.getX()	

•  this(<parameters>) calls a���
constructor	

  Example: this(0.0,0.0,0.0)	

super!

•  Functions mostly the same as
this (refers to object in scope)	

•  super.<method-call> calls a
method in the superclass or
even higher up!	

•  super(<parameters>) calls
constructor of super class	

  Useful for initialization	

  Necessary if fields private	

2/21/12	
 Subclasses & Inheritance	
 14	

Using this as a Constructor	

•  Usage: this(<params>)	

  Looks for constructor with

parameters of that type	

  Calls that constructor as a

helper method	

  Can only do this inside

another constructor	

•  This is why object name

must be in the scope box	

  Else what is this?	

  this = name in scope box	

 public Point3d(double x0, ���
 double y0, ���
 double z0) {	

 x = x0;	

 y = y0;	

 z = z0;	

 }	

 public Point3d() {	

 // Uses other constructor.	

 this(0.0,0.0,0.0)	

 }	

2/21/12	
 Subclasses & Inheritance	
 15	

Using super in a Constructor	

•  Subclasses inherit fields of
the superclass	

•  How do we initialize them?	

  Could initialize in subclass	

  Or could use constructor

from the parent class	

•  Usage: super(<params>)	

  Calls superclass constructor

with matching parameters	

  It must be first line in the

constructor!	

2/21/12	
 Subclasses & Inheritance	
 16	

@105dc	

bonus

…

double

Executive	

…

Employee	

0.0

salary double 0.0

start int 2012

name String Fred

Using super in a Constructor	

 public Employee(String n, int d) {	

 name= n;	

 start= d;	

 salary= 50000;	

}	

 public Executive(String n, int d, 	

 double b) { 	

 super(n,d);	

 bonus = b;	

}	

2/21/12	
 Subclasses & Inheritance	
 17	

@105dc	

bonus

…

double

Executive	

…

Employee	

0.0

salary double 0.0

start int 2012

name String Fred

