
1	

Announcements for This Lecture	

Readings	

•  pp. 175–181 	

•  Sections 2.5, 3.1.2-3.1.3 	

•  (optional) PLive p. 2-5	

Assignments	

•  Assignment 1 due tonight	

  Before Midnight!!!	

  Will have get by class Thu	

  Revise if you are told	

•  New Assignment Posted	

  No code; written only	

  Meant to do while you revise	

  Due in class next week	

•  Will go to 2-week assignment
schedule after Assignment 3	

2/14/12	
 Strings & Refinement	
 1	

Inside-Out Rule (See p. 83)	

•  Parameter x0 is found in
the frame for the method
call. Exists temporarily	

•  Parameter x “blocks” (or
shadows) the reference to
the field x.	

2/14/12	
 Strings & Refinement	
 2	

Point3d	

x	
 50.0	

@3e9cff	

setX(double x0) {
 x = x0;
}

 … 	

Point3d	

x	
 25.0	

@01a2ed	

setX(double x) {
 x = x;
}

 … 	

A Solution: this!

•  In object (folder) @3e9cff, ���
this refers to @3e9cff	

•  In object (folder) @01a2ed, ���
this refers to @01a2ed	

2/14/12	
 Strings & Refinement	
 3	

Point3d	

x	
 50.0	

@3e9cff	

setX(double x) {
 this.x = x;
}

 … 	

Point3d	

x	
 25.0	

@01a2ed	

setX(double x) {
 this.x = x;
}

 … 	

this is a built-in “variable” that gives an object name	

String is a Class; Quoted Text is an Object	

•  String s = "abc d";	

•  Indexed characters:	

01234

abc d

  s.length() 	
is 5	

  s.charAt(2) 	
is 'c'	

  s.substring(2) 	
is "c d"	

  s.substring(1,3) 	
is "bc"	

2/14/12	
 Strings & Refinement	
 4	

String	

@3e9cff	

length()	

charAt(int)	

substring(int)	

substring(int, int)	

indexOf(String)	

lastIndexOf(String)	

…	

"abc d"	

not a field	

fields are hidden	

@3e9cff	
s	

String Has a Lot of Useful Methods	

•  String s = "abc d";	

•  Indexed characters:	

01234

abc d

  s.substring(2,4) 	
is "c " (NOT "c d")	

  s.substring(2) 	
is "c d"	

  " bcd ".trim() 	
is "bcd" ���

(trim beginning and ending blanks)	

  s.indexOf("bc")	
is 1���

(index or position of first occurrence of in "bc" or -1 if none)	

•  See text pp. 175–181 	

•  Look in CD ProgramLive	

•  Look at API specs for String	

2/14/12	
 Strings & Refinement	
 5	

String Variables Hold Folder Names	

•  Create two Strings	

  String s = "hello";	

  String t = "hello";	

•  Do not use == to test
equality of s and t	

  s == t tests if same object	

  Not useful for Strings	

•  Use equals() instead	

  s.equals(t) tests if they

have the same text	

2/14/12	
 Strings & Refinement	
 6	

String	

@3e9cff	

equals(String)	

"hello"	

@3e9cff	
s	

String	

@01a2ed	

equals(String)	

"hello"	

@01a2ed	
t	

2	

Algorithms: Heart of Computer Science	

•  Algorithm: A step-by-step procedure for how to do
something (usually a calculation).	

•  Implementation: How to write an algorithm in a
specific programming language	

•  Good programmers know how to separate the two	

  Work out algorithm on paper or in head	

  Once done, implement it in the language	

  Limits errors to syntax errors (easy to find), not ���

conceptual errors (much, much harder to find) 	

•  Key to designing algorithms: stepwise refinement	

2/14/12	
 Strings & Refinement	
 7	

Stepwise Refinement: Basic Principles	

•  Write Specifications First ���
Write a method specification before writing its body	

•  Take Small Steps ���
Do a little at a time; follow the Mañana Principle	

•  Compile Often ���
This can catch syntax errors	

•  Separate Concerns ���
Focus on one step at a time	

•  Intersperse Programming and Testing ���
When you finish a step, test it immediately	

2/14/12	
 Strings & Refinement	
 8	

Mañana Principle	

•  If not in current step, delay to “tomorrow”	

  Use comments to write steps in English	

  Add “stubs” to ensure the program compiles ���

(e.g. empty definitions or bogus return statements)	

  Slowly replace stubs/comments with real code	

•  Only create new local variables if you have to	

•  Sometimes results in creation of more methods	

  Replace the step with a method call	

  But leave the method definition empty for now	

  This is called top-down design	

2/14/12	
 Strings & Refinement	
 9	

Example: Reordering a String	

•  lastNameFirst(”Walker White") is ”White, Walker”	

	
/** Yields: copy of s but in the form <last-name>, <first-name>���
 * Precondition: s is in the form <first-name> <last-name>���
 * with one blank between the two names */ ���
public static String lastNameFirst(String s) {	

	
 	
// Find the first name	

 	
 	
// Find the last name	

	
 	
// Put them together with a comma	

	
 	
return ""; // Stub return ���
}	

2/14/12	
 Strings & Refinement	
 10	

Example: Reordering a String	

•  lastNameFirst(”Walker White") is ”White, Walker”	

	
/** Yields: copy of s but in the form <last-name>, <first-name>���
 * Precondition: s is in the form <first-name> <last-name>���
 * with one blank between the two names */ ���
public static String lastNameFirst(String s) {	

	
 	
int endOfFirst = s.indexOf(" ");	

	
 	
String firstName = s.substring(0,endOfFirst);	

 	
 	
// Find the last name	

	
 	
// Put them together with a comma	

	
 	
return firstName; // Stub return (which you can test!)���
}	

2/14/12	
 Strings & Refinement	
 11	

Refinement: Creating Helper Methods	

	
/** ���
 * Yields: copy of s but in the form ���
 * <last-name>, <first-name>���
 * Precondition: s is in the form���
 * <first-name> <last-name>���
 * with one blank between names ���
*/���
public static String ���
 lastNameFirst(String s) {	

	
 	
String firstName = firstName(s);	

 	
 	
// Find the last name	

	
 	
// Put together with comma	

	
 	
return firstName; // Stub ���
}	

	
/** ���
 * Yields: first name in s ���
 * Precondition: s is in the form���
 * <first-name> <last-name>���
 * with one blank between names ���
*/���
public static String ���
 firstName(String s) {	

	
 	
int end = s.indexOf(" ")	

	
 	
return s.substring(0,end);	

	
}	

2/14/12	
 Strings & Refinement	
 12	

Do This Sparingly	

•  If you might use this step in

another method later	

•  If implementation is rather

long and complicated	

