
1	

Announcements for This Lecture	

Readings	

•  pp. 175–181 	

•  Sections 2.5, 3.1.2-3.1.3 	

•  (optional) PLive p. 2-5	

Assignments	

•  Assignment 1 due tonight	

  Before Midnight!!!	

  Will have get by class Thu	

  Revise if you are told	

•  New Assignment Posted	

  No code; written only	

  Meant to do while you revise	

  Due in class next week	

•  Will go to 2-week assignment
schedule after Assignment 3	

2/14/12	

 Strings & Refinement	

 1	

Inside-Out Rule (See p. 83)	

•  Parameter x0 is found in
the frame for the method
call. Exists temporarily	

•  Parameter x “blocks” (or
shadows) the reference to
the field x.	

2/14/12	

 Strings & Refinement	

 2	

Point3d	

x	

 50.0	

@3e9cff	

setX(double x0) {
 x = x0;
}

 … 	

Point3d	

x	

 25.0	

@01a2ed	

setX(double x) {
 x = x;
}

 … 	

A Solution: this!

•  In object (folder) @3e9cff, ���
this refers to @3e9cff	

•  In object (folder) @01a2ed, ���
this refers to @01a2ed	

2/14/12	

 Strings & Refinement	

 3	

Point3d	

x	

 50.0	

@3e9cff	

setX(double x) {
 this.x = x;
}

 … 	

Point3d	

x	

 25.0	

@01a2ed	

setX(double x) {
 this.x = x;
}

 … 	

this is a built-in “variable” that gives an object name	

String is a Class; Quoted Text is an Object	

•  String s = "abc d";	

•  Indexed characters:	

01234

abc d

  s.length() 	

is 5	

  s.charAt(2) 	

is 'c'	

  s.substring(2) 	

is "c d"	

  s.substring(1,3) 	

is "bc"	

2/14/12	

 Strings & Refinement	

 4	

String	

@3e9cff	

length()	

charAt(int)	

substring(int)	

substring(int, int)	

indexOf(String)	

lastIndexOf(String)	

…	

"abc d"	

not a field	

fields are hidden	

@3e9cff	

s	

String Has a Lot of Useful Methods	

•  String s = "abc d";	

•  Indexed characters:	

01234

abc d

  s.substring(2,4) 	

is "c " (NOT "c d")	

  s.substring(2) 	

is "c d"	

  " bcd ".trim() 	

is "bcd" ���

(trim beginning and ending blanks)	

  s.indexOf("bc")	

is 1���

(index or position of first occurrence of in "bc" or -1 if none)	

•  See text pp. 175–181 	

•  Look in CD ProgramLive	

•  Look at API specs for String	

2/14/12	

 Strings & Refinement	

 5	

String Variables Hold Folder Names	

•  Create two Strings	

  String s = "hello";	

  String t = "hello";	

•  Do not use == to test
equality of s and t	

  s == t tests if same object	

  Not useful for Strings	

•  Use equals() instead	

  s.equals(t) tests if they

have the same text	

2/14/12	

 Strings & Refinement	

 6	

String	

@3e9cff	

equals(String)	

"hello"	

@3e9cff	

s	

String	

@01a2ed	

equals(String)	

"hello"	

@01a2ed	

t	

2	

Algorithms: Heart of Computer Science	

•  Algorithm: A step-by-step procedure for how to do
something (usually a calculation).	

•  Implementation: How to write an algorithm in a
specific programming language	

•  Good programmers know how to separate the two	

  Work out algorithm on paper or in head	

  Once done, implement it in the language	

  Limits errors to syntax errors (easy to find), not ���

conceptual errors (much, much harder to find) 	

•  Key to designing algorithms: stepwise refinement	

2/14/12	

 Strings & Refinement	

 7	

Stepwise Refinement: Basic Principles	

•  Write Specifications First ���
Write a method specification before writing its body	

•  Take Small Steps ���
Do a little at a time; follow the Mañana Principle	

•  Compile Often ���
This can catch syntax errors	

•  Separate Concerns ���
Focus on one step at a time	

•  Intersperse Programming and Testing ���
When you finish a step, test it immediately	

2/14/12	

 Strings & Refinement	

 8	

Mañana Principle	

•  If not in current step, delay to “tomorrow”	

  Use comments to write steps in English	

  Add “stubs” to ensure the program compiles ���

(e.g. empty definitions or bogus return statements)	

  Slowly replace stubs/comments with real code	

•  Only create new local variables if you have to	

•  Sometimes results in creation of more methods	

  Replace the step with a method call	

  But leave the method definition empty for now	

  This is called top-down design	

2/14/12	

 Strings & Refinement	

 9	

Example: Reordering a String	

•  lastNameFirst(”Walker White") is ”White, Walker”	

	

/** Yields: copy of s but in the form <last-name>, <first-name>���
 * Precondition: s is in the form <first-name> <last-name>���
 * with one blank between the two names */ ���
public static String lastNameFirst(String s) {	

	

 	

// Find the first name	

 	

 	

// Find the last name	

	

 	

// Put them together with a comma	

	

 	

return ""; // Stub return ���
}	

2/14/12	

 Strings & Refinement	

 10	

Example: Reordering a String	

•  lastNameFirst(”Walker White") is ”White, Walker”	

	

/** Yields: copy of s but in the form <last-name>, <first-name>���
 * Precondition: s is in the form <first-name> <last-name>���
 * with one blank between the two names */ ���
public static String lastNameFirst(String s) {	

	

 	

int endOfFirst = s.indexOf(" ");	

	

 	

String firstName = s.substring(0,endOfFirst);	

 	

 	

// Find the last name	

	

 	

// Put them together with a comma	

	

 	

return firstName; // Stub return (which you can test!)���
}	

2/14/12	

 Strings & Refinement	

 11	

Refinement: Creating Helper Methods	

	

/** ���
 * Yields: copy of s but in the form ���
 * <last-name>, <first-name>���
 * Precondition: s is in the form���
 * <first-name> <last-name>���
 * with one blank between names ���
*/���
public static String ���
 lastNameFirst(String s) {	

	

 	

String firstName = firstName(s);	

 	

 	

// Find the last name	

	

 	

// Put together with comma	

	

 	

return firstName; // Stub ���
}	

	

/** ���
 * Yields: first name in s ���
 * Precondition: s is in the form���
 * <first-name> <last-name>���
 * with one blank between names ���
*/���
public static String ���
 firstName(String s) {	

	

 	

int end = s.indexOf(" ")	

	

 	

return s.substring(0,end);	

	

}	

2/14/12	

 Strings & Refinement	

 12	

Do This Sparingly	

•  If you might use this step in

another method later	

•  If implementation is rather

long and complicated	

