
1	

Important For This Lecture	

Readings	

•  Sections 2.1 – 2.4	

Announcements	

•  Tuesday’s Quiz	

•  Focus on Assignment 1!	

  Do not wait until Monday	

•  1-on-1s for next 2 weeks	

  Slots still available	

 We may not get to ���
 everything on the ���
 slides today. You are ���
 still responsible for ���
 reading them in the ���
 text for the next lab.	

• Contains the name of ���
 entity associated with ���
 the method���
• Typically, the object in ���
 the method call	

• Number of the statement in ���
 method body to execute next ���
• Starts with 1���
• Helps you keep track of���
 where you are	

Draw parameters ���
as variables ���
(e.g. boxes)	

How Do Methods Work?	

•  Method Frame: Formal representation of a method call	

•  Remember that methods are inside objects (folders)	

Draw template on 	

a piece of paper	

 method name: instruction counter	

 scope box	

local variables (later in the lecture)	

parameters	

Example: p.setX(50.0); 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the method body	

  Look for variables in the frame	

  If not there, look in folder given

by the scope box	

4.  Erase the frame for the call	

public void setX(double x0) {	

 x = x0;	

}	

Point3d	

x	

 15.0	

@3e9cff	

getX() { … }
setX(double x0) { x = x0; }

 … 	

x0	

setX:1	

 @3e9cff	

50.0	

ERASE WHOLE FRAME	

@3e9cff	

p	

Point3d	

 50.0	

✗	

Static Methods	

•  Static methods are tied to a class
(e.g. file drawer)	

•  They must not access the fields!	

  Fields are in the folders	

  Folders have different field values	

•  Their method calls are different:	

  <Class-Name>.<Method-Call>	

•  Example: Math methods in lab	

  Math.ceil(5.6);	

  Math.min(1,2);	

  Math.sqrt(5);	

Point3d	

Class	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

Object	

Defining Static Methods	

Regular Version	

 	

/** Yields: "at least one of the ���

 * coordinates of this point is 0" */ ���
public boolean hasAZero() {	

 	

 return x == 0 || y == 0 || z == 0;	

	

}	

Static Version	

	

/** Yields: "at least one of the ���
 * coordinates of the point q is 0" */ ���
public static boolean ���
 hasAZero(Point3d q) {	

 	

 return q.x == 0 || q.y == 0 ���
 || q.z == 0;	

	

}	

Point3d.hasAZero(q);	

q.hasAZero();	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

@13fc8	

q	

Goes in the
scope box	

Call:	

Call:	

Static Variables	

•  Static variable is a single entity in the class 	

  Used to hold information about all objects	

•  Declare it just like a field declaration	

public static int numberOfWorkers; // no. of Worker objects created	

•  Usage: Worker.numberOfWorkers	

@4e0a1	

lname Obama
Worker	

…	

@13fc8	

lname Obama
Worker	

…	

2	

numberOfWorkers	

@13fc8	

x	

@4e0a1	

y	

Class (file drawer) for class Worker	

Class, not
variable	

2	

Method Model for Static Methods	

1.  Draw a frame for the call	

  Scope box contains class!	

2.  Assign the argument value
to the parameter (in frame)	

3.  Execute the method body	

  Look for variables in the frame	

  If not there, look in static

variables in class in scope box	

4.  Erase the frame for the call	

 public static boolean
	

hasAZero(Point3d q) {	

 return q.x == 0 || q.y == 0 ���
 || q.z == 0	

 }	

q	

hasAZero:1	

 Point3d	

@13fc8	

 Scope	

Conditionals: If-Statements	

Format	

	

if (<boolean-expression>) {���

	

<statement>;���
	

…	

	

 	

<statement>;���
}	

Example	

	

 /* Put x in z if it is positive */	

	

 if (x > 0) {	

	

 z = x;	

	

 }	

Execution: ���
if the <boolean-expression> is true, then execute all of the
statements inside of the braces ({ })	

Conditionals: If-Else-Statements	

Format	

	

if (<boolean-expression>) {���

	

<statement>;���
	

…���

} else {	

	

 	

<statement>;���

	

…���
}	

Example	

	

 /* Put max of x, y in z */	

	

 if (x > y) {	

	

 z = x;	

	

 } else {	

	

 z = y;	

	

 }	

Execution: ���
if the <boolean-expression> is true, then execute all statements in
braces after if; otherwise execute statements in braces after else	

Application: Invariants	

public class Worker {	

 private String lname; // Last name���
 // never null	

	

 /** Set worker’s last name to n 	

	

 * Precondition: Cannot be null���
 */	

 public void setName(String n) {	

 lname= n;	

 }	

}	

public class Worker {	

 private String lname; // Last name���
 // never null	

	

 /** Set worker’s last name to n 	

	

 * OR to “” if n is null���
 */	

 public void setName(String n) {	

 if (n == null) {	

 lname = “”!
 } else {	

 lname = n;	

 }	

 }	

}	

Local Variables	

•  Local variable: declared
inside a method body	

•  Four types of variables:	

  Fields (in folders)	

  Parameters (method header)	

  Static (in file drawer)	

  Local (method body)	

•  Local variables are very
useful with if-statements	

  Hold temporary values	

  “Scratch computation”	

	

 // swap x, y ���
 // Put the larger in y���
 if (x > y) {���
 int temp; 
 temp = x;���
 x = y;���
 y = temp;���
 }	

x 3 y 0

temp 3

0 3

Local Variable Scope	

/** Yields: the max of x and y */	

public static int max(int x, int y) {	

 // Swap x and y ���
 // Put the max in x	

 if (x < y) {	

 int temp;	

 temp= x;	

 x= y;	

 y= temp;	

 }	

 return x;	

 }	

•  Scope of local variable: ���
the places it can be used	

•  Only inside a “block”	

  Following the declaration	

  Inside of the braces {}	

scope of temp	

Cannot use temp down here.���
You will get an error!	

