
1	

Important For This Lecture	

Readings	

•  Sections 2.1 – 2.4	

Announcements	

•  Tuesday’s Quiz	

•  Focus on Assignment 1!	

  Do not wait until Monday	

•  1-on-1s for next 2 weeks	

  Slots still available	

 We may not get to ���
 everything on the ���
 slides today. You are ���
 still responsible for ���
 reading them in the ���
 text for the next lab.	

• Contains the name of ���
 entity associated with ���
 the method���
• Typically, the object in ���
 the method call	

• Number of the statement in ���
 method body to execute next ���
• Starts with 1���
• Helps you keep track of���
 where you are	

Draw parameters ���
as variables ���
(e.g. boxes)	

How Do Methods Work?	

•  Method Frame: Formal representation of a method call	

•  Remember that methods are inside objects (folders)	

Draw template on 	

a piece of paper	

 method name: instruction counter	
 scope box	

local variables (later in the lecture)	

parameters	

Example: p.setX(50.0); 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the method body	

  Look for variables in the frame	

  If not there, look in folder given

by the scope box	

4.  Erase the frame for the call	

public void setX(double x0) {	

 x = x0;	

}	

Point3d	

x	
 15.0	

@3e9cff	

getX() { … }
setX(double x0) { x = x0; }

 … 	

x0	

setX:1	
 @3e9cff	

50.0	

ERASE WHOLE FRAME	

@3e9cff	
p	

Point3d	
 50.0	
✗	

Static Methods	

•  Static methods are tied to a class
(e.g. file drawer)	

•  They must not access the fields!	

  Fields are in the folders	

  Folders have different field values	

•  Their method calls are different:	

  <Class-Name>.<Method-Call>	

•  Example: Math methods in lab	

  Math.ceil(5.6);	

  Math.min(1,2);	

  Math.sqrt(5);	

Point3d	

Class	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

Object	

Defining Static Methods	

Regular Version	

 	
/** Yields: "at least one of the ���

 * coordinates of this point is 0" */ ���
public boolean hasAZero() {	

 	
 return x == 0 || y == 0 || z == 0;	

	
}	

Static Version	

	
/** Yields: "at least one of the ���
 * coordinates of the point q is 0" */ ���
public static boolean ���
 hasAZero(Point3d q) {	

 	
 return q.x == 0 || q.y == 0 ���
 || q.z == 0;	

	
}	

Point3d.hasAZero(q);	

q.hasAZero();	

@13fc8	

Point3d	

x 3.5

y

z

-2.0

0.0

@13fc8	
q	

Goes in the
scope box	

Call:	

Call:	

Static Variables	

•  Static variable is a single entity in the class 	

  Used to hold information about all objects	

•  Declare it just like a field declaration	

public static int numberOfWorkers; // no. of Worker objects created	

•  Usage: Worker.numberOfWorkers	

@4e0a1	

lname Obama
Worker	

…	

@13fc8	

lname Obama
Worker	

…	

2	
numberOfWorkers	

@13fc8	
x	

@4e0a1	
y	

Class (file drawer) for class Worker	

Class, not
variable	

2	

Method Model for Static Methods	

1.  Draw a frame for the call	

  Scope box contains class!	

2.  Assign the argument value
to the parameter (in frame)	

3.  Execute the method body	

  Look for variables in the frame	

  If not there, look in static

variables in class in scope box	

4.  Erase the frame for the call	

 public static boolean
	
hasAZero(Point3d q) {	

 return q.x == 0 || q.y == 0 ���
 || q.z == 0	

 }	

q	

hasAZero:1	
 Point3d	

@13fc8	
 Scope	

Conditionals: If-Statements	

Format	

	
if (<boolean-expression>) {���

	
<statement>;���
	
…	

	
 	
<statement>;���
}	

Example	

	
 /* Put x in z if it is positive */	

	
 if (x > 0) {	

	
 z = x;	

	
 }	

Execution: ���
if the <boolean-expression> is true, then execute all of the
statements inside of the braces ({ })	

Conditionals: If-Else-Statements	

Format	

	
if (<boolean-expression>) {���

	
<statement>;���
	
…���

} else {	

	
 	
<statement>;���

	
…���
}	

Example	

	
 /* Put max of x, y in z */	

	
 if (x > y) {	

	
 z = x;	

	
 } else {	

	
 z = y;	

	
 }	

Execution: ���
if the <boolean-expression> is true, then execute all statements in
braces after if; otherwise execute statements in braces after else	

Application: Invariants	

public class Worker {	

 private String lname; // Last name���
 // never null	

	
 /** Set worker’s last name to n 	

	
 * Precondition: Cannot be null���
 */	

 public void setName(String n) {	

 lname= n;	

 }	

}	

public class Worker {	

 private String lname; // Last name���
 // never null	

	
 /** Set worker’s last name to n 	

	
 * OR to “” if n is null���
 */	

 public void setName(String n) {	

 if (n == null) {	

 lname = “”!
 } else {	

 lname = n;	

 }	

 }	

}	

Local Variables	

•  Local variable: declared
inside a method body	

•  Four types of variables:	

  Fields (in folders)	

  Parameters (method header)	

  Static (in file drawer)	

  Local (method body)	

•  Local variables are very
useful with if-statements	

  Hold temporary values	

  “Scratch computation”	

	
 // swap x, y ���
 // Put the larger in y���
 if (x > y) {���
 int temp; 
 temp = x;���
 x = y;���
 y = temp;���
 }	

x 3 y 0

temp 3

0 3

Local Variable Scope	

/** Yields: the max of x and y */	

public static int max(int x, int y) {	

 // Swap x and y ���
 // Put the max in x	

 if (x < y) {	

 int temp;	

 temp= x;	

 x= y;	

 y= temp;	

 }	

 return x;	

 }	

•  Scope of local variable: ���
the places it can be used	

•  Only inside a “block”	

  Following the declaration	

  Inside of the braces {}	

scope of temp	

Cannot use temp down here.���
You will get an error!	

