
Specifications & Testing	

Lecture 5	

Important For This Lecture	

Readings	

•  Testing with Junit 	

  Appendix I.2.4 	

•  Function toString 	

  pp. 112—113	

Announcements	

•  Assignment 1 is live	

  Posted on web page	

  Due Tuesday, Feb. 14th	

•  1-on-1s for next 2 weeks	

  Slots still available	

  Schedule through CMS	

•  Recall Lab Schedules	

  12:20-2:15 in ACCEL	

  2:30-4:25 in Phillips 318	

2	

Quiz	

•  Get out a blank piece of paper.	

•  Write your LAST name, FIRST name, and Cornell

NetID (not your Cornell ID. My NetID is wmw2)	

•  Write down the purpose of a constructor.
•  Write down the steps in evaluating the new expres-

sion in the following assignment statement (you should
not need to know what the class definition looks like):	

 t = new Book("Truth is All", 163845);

•  Please be literal-minded and to write precise statements.

2/7/12	
 Specifcations & Testing	
 3	

Public vs. Private	

•  Recall our convention	

  Fields are private	

  Everything else public	

•  Private means “hidden”	

  Public fields can be

accessed directly	

•  But this is a bad idea!	

  Cannot control how other
programmers use them	

  They might violate our
invariants (and get bugs)	

2/7/12	
 Specifcations & Testing	
 4	

public class PublicPoint3d {!
 public double x;!
 public double y;!
 public double z;!
}	

•  Type in Interactions Pane:	

> PublicPoint3d p = new

PublicPoint3d();	

> p.x = 3.0;	

> p.x	

•  No need for getters/setters	

Public vs. Private	

•  Recall our convention	

  Fields are private	

  Everything else public	

•  Private means “hidden”	

  Public fields can be

accessed directly	

•  But this is a bad idea!	

  Cannot control how other
programmers use them	

  They might violate our
invariants (and get bugs)	

2/7/12	
 Specifcations & Testing	
 5	

public class PublicPoint3d {!
 public double x;!
 public double y;!
 public double z;!
}	

•  Type in Interactions Pane:	

> PublicPoint3d p = new

PublicPoint3d();	

> p.x = 3.0;	

> p.x	

•  No need for getters/setters	

Invariants must always be true. Always.	

The Role of Getters and Setters	

•  Make sure that the invariants are true	

Aside: Private is a Class Property!	

•  Private means hidden to
objects of other classes!	

  Does not apply to two

objects of same class	

  Methods can access fields

in object of same class	

•  Example: Point distance	

•  Useful in Assignment 1	

  Hint: What field does not
have getters or setters?	

2/7/12	
 Specifcations & Testing	
 6	

public class Point3d {!
 private double x;!
 private double y;!
 private double z;!
 …!
 /** Yields: Distance to q */!
 public double  

 distanceTo(Point3d q) {!
 return Math.sqrt(!
 (x-q.x)*(x-q.x)+!
 (y-q.y)*(y-q.y)+!
 (z-q.z)*(z-q.z));!
 }!
}	

We Write Programs to Do Things	

•  Methods are the key doers	

2/7/12	
 Specifcations & Testing	
 7	

Method Definition	
 Method Call	

•  Defines what method does	

public void setName(String n) {	

 lname= n;	

}	

•  Command to do the method	

	
 	
var.setName(“Bob”);	

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is declared within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

Memorize These!	

Write them down
several times.	

Method	

Header	

Method	

Body	

(inside {})	

Invariants vs. Preconditions	

2/7/12	
 8	

@4e0a1	

lname …

ssn

boss

…

…

Worker	

getName()	

setName(String n)	

/** Set worker’s last name to n 	

 * Precondition: n cannot be null	

or “Bob”	

 */	

public void setName(String n) {	

 lname = n;	

 }	

•  Both are properties that
must be true	

  Invariant: Property of a field 	

  Precondition: Property of a

method parameter	

•  Preconditions are a way to

“pass the buck”	

  Responsibility of the method

call, not method definition	

  How you will “enforce”

invariants in Assignment 1	
• Recall lname invariant	

• Precondition ensures ���
 invariant is true	

Specifcations & Testing	

toString(): A Very Special Method	

•  We use interactions pane ���
to see object “tab name”	

•  Interactions pane is really
showing off a string	

  String that represents object	

  By default: the tab name	

•  But we can change this!	

  Add toString() to your class	

  That String will be used in

place of the tab name	

•  Will see usage later	

public class Point3d {!
 …!
 /**Yields: String (x,y,z)*/!
 public String toString() {!
 return "("+x+","+y+",”  

 +z+")";!
 }!
}!

2/7/12	
 Specifcations & Testing	
 9	

•  Type in Interactions Pane:	

> Point3d p = new Point3d();	

> p	

•  Remove toString() & repeat	

toString(): A Very Special Method	

•  We use interactions pane ���
to see object “tab name”	

•  Interactions pane is really
showing off a string	

  String that represents object	

  By default: the tab name	

•  But we can change this!	

  Add toString() to your class	

  That String will be used in

place of the tab name	

•  Will see usage later	

public class Point3d {!
 …!
 /**Yields: String (x,y,z)*/!
 public String toString() {!
 return "("+x+","+y+",”  

 +z+")";!
 }!
}!

2/7/12	
 Specifcations & Testing	
 10	

•  Type in Interactions Pane:	

> Point3d p = new Point3d();	

> p	

•  Remove toString() & repeat	

•  Without toString():	

Point3d@7b751a9e	

•  With toString():	

(0,0,0)	

Assigned by Java	

Always Different	

Specifications for Methods in Worker	

2/7/12	
 Specifcations & Testing	
 11	

@4e0a1	

lname “Obama”

ssn

boss

123456789

null

Worker	

@c4e21	

lname “Biden”

ssn

boss

2

@4e0a1	

Worker	

String	

int	

Worker	

String	

int	

Worker	

/** Constructor: a worker with last name n
 * (“” if none), SSN s, and boss b (null if none).
 * Precondition: n is not null, s in
 * 0..999999999 with no leading zeros.*/
public Worker(String n, int s, Worker b)

/** Yields: worker's last name */
public String getLname()

/** Yields: last 4 SSN digits w/o leading zeroes. */
public int getSSN()

/** Yields: worker's boss (null if none) */
public Worker getBoss()

/** Set boss to b */
public void setBoss(Worker b)

w0 @4e0a1	
 Worker	
 w1 @c4e21	
 Worker	

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

 /** Yields: number of vowels in word w.	

 * Precondition: w contains at least one letter and only letters */	

 public int numberOfVowels(String w) {	

 // (nothing here yet!)	

 }	

2/7/12	
 Specifcations & Testing	
 12	

Get in the habit of writing test cases for a method from the method’s
specification —even before writing the method’s body. 	

Test Cases: Finding Errors	

•  Bug: Error in a program. (Always expect them!)	

•  Debugging: Process of finding bugs and removing them. 	

•  Testing: Process of analyzing, running program, looking for bugs.	

•  Test case: A set of input values, together with the expected output.	

 /** Yields: number of vowels in word w.	

 * Precondition: w contains at least one letter and only letters */	

 public int numberOfVowels(String w) {	

 // (nothing here yet!)	

 }	

2/7/12	
 Specifcations & Testing	
 13	

Get in the habit of writing test cases for a method from the method’s
specification —even before writing the method’s body. 	

Some Test Cases	

  numberOfVowels(“Bob”)���

Answer should be 1	

  numberOfVowels(“Aeiuo”)���

Answer should be 5	

  numberOfVowels(“Grrr”)���

Answer should be 0	

Test Cases for a Constructor in Worker	

1.  w1 = new Worker(“Obama”, 1, null);���

Name should be: “Obama”; SSN: 1; boss: null.	

2.  w2 = new Worker(“Biden”, 2, w1);���

Name should be: “Biden”; SSN: 2; boss: w1.	

•  To create a testing framework	

  Select menu File item new Junit Test Case…. 	

  At prompt, put in class name WorkerTester	

  Save it in same directory as class Worker	

•  This imports junit.framework.TestCase; has tools for testing	

2/7/12	
 Specifcations & Testing	
 14	

•  Need a way to run these test cases	

•  Could use interactions pane, but this is time-consuming.	

Test Case Template Created by DrJava	

/** A JUnit test case class.���
* Every method starting with "test" will be called when running���
* the test with JUnit. */���
public class WorkerTester extends TestCase {���

 /** A test method.���
 * (Replace "X" with a name describing the test. Write as ���
 * many "testSomething" methods in this class as you wish, 
 * and each one will be called when testing.) */	

 public void testX() {	

 }	

}	

•  One method you can use in testX is	

assertEquals(x,y)	

•  It tests whether expected value x equals computed value y.	

2/7/12	
 Specifcations & Testing	
 15	

Method to Test Constructor (& Getter Methods)	

/** Test first constructor (and getter methods getName, getSSN4, and getBoss) */���
public void testConstructor() {���
 Worker w1= new Worker(“Obama", 123456789, null);���
 assertEquals(“Obama”, w1.getName(),);���
 assertEquals(6789, w1.getSSN4());���
 assertEquals(null, w1.getBoss());���

 Worker w2= new Worker(”Biden", 2, w1);���
 assertEquals(“Biden”, w2.getName());���
 assertEquals(2, w2.getSSN4());���
 assertEquals(w1, w2.getBoss());���
}	

16	

first ���
test
case	

2nd���
test
case	

assertEquals(x,y): 	

•  Tests if x (expected)

equals y (computed)	

•  If they are not equal, print

an error message & stops	

•  Other testing procedures

on p. 488 of the text	

Special: called w/o object	
	
Every time you click button ���
Test in DrJava, this method ���
(and all other testX methods)
will be called.	

