Lecture 2

Variables \& Assignments

iClickers

- Have you registered your iclicker?
- If not, visit
- atcsupport.cit.cornell.edu/pollsrvc/
- Instructions on iclickers can be found here:
- atc.cit.cornell.edu/course/polling/clickers.cfm
- Find these links on the course webpage
- Click "Texts"
- Scroll down on the page that opens.

Warm-Up: Demographic Question

- What programming experience have you had? (Answers go from most experience to least)
A. I have seen objects and classes before
B. I have seen loops and conditionals, but not objects
C. I have seen variables and assignment statements, but that is all I remember
D. I know how to make a webpage in HTML, but I do not know any programming languages
E. I don't know anything listed above

Readings for this Lecture and Previous

- Sections 1.1, 1.2, 1.3.

Lab 1 will give you practice with concepts and details of 1.2, 1.3.

- PLive: Lesson 0, Lesson page 1.3, Activity 1-4.1.
- Quiz 1 in class, Tuesday 6 Sept. (more about it later)

Previously on CS 1110...

Casting: Converting Value Types

- Basic form: (type) value
- (double) 2 casts 2 to type double. Value is 2.0 Widening cast. Java does it automatically if needed
- (int) 2.56 casts 2.56 to type int. Value is 2

Narrowing cast. Java never does it automatically because it might lose information.

- Narrow to wide: int \Rightarrow long \Rightarrow float \Rightarrow double
- Other examples:
- (double)(int) $2.56 \quad$ Value is 2.0
- (double) $2.56 \quad$ Value is 2.56

Type: Set of values and the operations on them

- Type boolean:
- values: true, false
- operations: ! (not) \&\& (and) II (or)
- !b

Cannot cast to or from int, double
read "not b"
true if b is false and false if b is true

- b \&\& c read "b and c" true if both b and c are true, false otherwise
- b ll c, read "b or c" is true if b is true or c is true, false otherwise
- $\mathrm{i}<\mathrm{j} \quad \mathrm{i}<=\mathrm{j} \quad \mathrm{i}==\mathrm{j} \quad \mathrm{i}>=\mathrm{j} \quad \mathrm{i}>\mathrm{j} \quad \mathrm{i}!=\mathrm{j}$
evaluate to true or false
$==$, not $=$

Type: Set of values and the operations on them

- Type String:
- values: any sequence of characters
- operation(s): + (catenation, or concatenation)
- String literal: sequence of chars in double quotes
- " abcex $3 \$ \mathrm{~g}<\&$ " or "Hello World!"
- String catenation: "bc" + "fg"
- + is overloaded: Outcome of $x+y$ depends on type
- If one operand (x or y) is a String, the other is converted to a String (if necessary) and catenation is done.
- Otherwise, if one operand is a double, the other is cast to a double (if necessary) and a double addition is done.
- Otherwise, both operands are ints and an int addition is done.

Operator Precedence

- What is the difference between the following?
- 2* $(1+3)$
add, then multiply
- 2 * $1+3$
multiply, then add
- Operations are performed in a set order
- Parentheses make the order explicit
- What happens when there aren't parentheses?
- Operator Precedence: The fixed order that Java processes operators in absence of parentheses

Precedence of Java Operators (p. 23)

- Unary operators: + - !
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Arithmetic comparisons: < > <= >=
- Equality relations: == !=
- Logical and: \&\&
- Logical or: ||

You will practice all of these in Lab 1.

Variables (p. 26)

- A variable is
- a named memory location (box),
- a value (in the box), and

Memorize definition!

Write it down several times.

- a type (limiting what can be put in box)
$x \boxed{\text { int }}$
Variable names must start with a letter
area 20.1
double
Here is variable \mathbf{x}, with value 5 .
It can contain an int value.

Here is variable area, with value 20.1. It can contain a double value.

Exercise: Understanding Assignment

- Draw variable x on piece of p $x>7$ int A: I did it correctly!
B: I drew another box named x
C: I did something else
D: I did nothing -just watched
- Step 1: evaluate the expression $\mathrm{x}+2$
- For x, use the value in variable x
- Write the expression somewhere on your paper
- Step 2: Store the value of the expression in x
- Cross off the old value in the box
- Write the new value in the box for x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Exercise: Understanding Assignment

- You have this:

$$
x \not X 22 \mathrm{int}
$$

A: I did it correctly!
B: I drew another box named x
C: I did something else
D: I did nothing -just watched

- Execute this command:
- Step 1: Evaluate the expression 3 * x + 1
- Step 2: Store its value in x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Exercise: Understanding Assignment

- You now have this:

- The command:
- Step 1: Evaluate the expression $3 * x+1$
- Step 2: Store its value in x
- This command is called an assignment statement.
- Tells YOU or the computer to DO something.
- Performing it is called executing the command.
- Command requires both evaluate AND store to be correct

Exercise: Understanding Assignment

- You now have this:

$$
x \not x 22 \mathrm{int}
$$

- The command:
- Step 1: Evaluate the expression 3 * x + 1
- Step 2: Store its value in x
- This assignment statement is written in Java like this:

$$
\underline{x}=\overline{3 * x+1}
$$

- When given an assignment statement, first evaluate the expression and then store its new value in the variable

Exercise: Understanding Assignment

- Put another variable y on your paper to get this:

$$
x \nless 22 \text { int } \quad \text { y } 7 \text { int }
$$

- Execute this assignment:

$$
y=x / y ;
$$

- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

A: I did it correctly!
B: I drew another box named y
C: I stored the value in x
D: I did something else

| A: I did it correctly! |
| :--- | :--- |
| B: I drew another box named y |
| C: I stored the value in x |
| D: I did something else |
| E: I did nothing - just watched |

Variable Declaration (p. 26)

Memorize both

- A declaration of a variable gives the name of the variable and the type of value it can contain these definitions!

Write them down

 several times. int x ;Here is a declaration of x , indicating that it contain an int value.
double area; Here is a declaration of area, indicating that it can contain a double value.

Assignment Statement (p. 27)

- Execution of an assignment statement stores a value in a variable

```
To execute the assignment
<var>= <expr>;
evaluate expression <expr> and store its value in variable <var>
```

$\mathrm{x}=\mathrm{x}+1$; Evaluate expression $\mathrm{x}+1$ and store its value in variable x .

Initialization: Declaration+Assignment

- Can combine declaration and assignment int $x=3 ; \quad$ Here is a declaration of x, indicating that it contain an int value.
It starts with a value of 3 .
double area $=2.3 ; \quad$ Here is a declaration of area, indicating that it can contain a double value.
It starts with a value of 2.3.
- This is called initializing the variable.
- As a rule it is good to initialize all declarations.
- Will see what happens if you do not, later.

Quiz(es) Next Week

- Click on "quizzes" on webpage for information
- Quiz 0. Complete by Sunday, January 29.
- Quiz 1. In class, Tuesday, January 31.

You need to know

1. Definition of "type" (see p. 7 of text)
2. How to execute the assignment statement (p. 28)
