
CS 1110, LAB 5: VECTOR EXERCISES

Name: Net-ID:

There is an online version of these instructions at

http://www.cs.cornell.edu/courses/cs1110/2012sp/labs/lab05.php

You may wish to use that version of the instructions.

Class java.util.Vector provides the ability to maintain a growable/shrinkable list of objects, which can
be of great utility in cases where you do not know ahead of time how many objects will be in the final list.
The purpose of this lab is to gain some experience with class Vector and learn just how useful it can be.

Requirements For This Lab. The very first thing that you should do in this lab is to download the file
VisualVector.java from the course web page:

http://www.cs.cornell.edu/courses/cs1110/2012sp/labs/lab05/VisualVector.java

You will note that this is a subclass of JFrame. That is because, instead of a JUnit test, we are going to
use a GUI program to help you “test” the lab. The GUI will give you a visual representation of the changes
that you make to the class.

Within VisualVector.java you will notice several function (and procedure) stubs. They stand out
because they have the comments

//-------- IMPLEMENT ME! --------//

in their method bodies. As with the last lab, you will be filling in code here.

For this lab you will show your instructor the contents of VisualVector.java and what you have written
on this sheet; there is no JUnit test this time. As always, you should try to finish the lab during your section.
However, if you do not finish during section, you have until the beginning of lab next week to finish
it. You should always do your best to finish during lab hours; remember that labs are graded on effort, not
correctness.

1. Understanding the Vector Class

The material in this lab is covered in Section 5.3 (pp. 184-188) of the text. After the lab, you should
study that section.

Basic Terminology. A Vector v contains a list of elements, numbered 0, 1, 2, ... The function v.size()

tells how many elements are in the list.

We use the following non-Java notation to refer to parts of the list. The notation helps us write things
more clearly and succinctly. We refer to the elements in the list as v[0], v[1], . . ., v[v.size()-1]. We
refer to part of the list, such as elements v[h], v[h+1], . . ., v[k] as v[h..k]. We also write v[h..] to mean
elements v[h], v[h+1], . . ., v[v[v.size()-1].

1

http://www.cs.cornell.edu/courses/cs1110/2012sp/labs/lab05.php
http://www.cs.cornell.edu/courses/cs1110/2012sp/labs/lab05/VisualVector.java


2 CS 1110, LAB 5: VECTOR EXERCISES

As Vector is a generic class, we use the following assignment statement to create a Vector that can contain
only elements of the class C, and store the name of this Vector in v:

Vector <C> v = new Vector<C>();

The appearance of <C> says that the Vector may contain only elements of class C. In this lab, we will be
working with Vector<Character>, meaning a Vector whose elements are of class Character.

Finally, Vector whose name is in v has a ¡i¿capacity¡/i¿, which is the number of elements for which space
in the computer memory has been allocated. This is different from its size, which is the number of elements
in it. When an element is to be added to v but the size is already equal to the capacity, Java allocates
space for more elements (for efficiency reasons, the capacity is usually doubled). The capacity can also be
controlled by the programmer, and it os sometimes possible to save memory or make a program a little faster
in this way (though you should never worry about this).

The Vector API. You can find the API for Vector following the Java API link from the website for CS
1110. Remember that Vector is in the package java.util and not java.lang. Alternatiely, you can simply
copy and paste this URL into your browser:

http://docs.oracle.com/javase/6/docs/api/java/util/Vector.html

We highly recommend that you do not Google for the Vector API. For historical reasons (see below), the
top Google link is to the Java 1.4.2 version of Vector. There have been a lot of changes to this class over
the years and it is important that you only look at the API for the current (for this course, Java 1.6) version
of Vector.

Remember from class that Vector is a generic class. That means that its type is specified by what it
contains, which is put inside “angled brackets” (e.g. <, >). On the API page for Vector, you will notice
that it puts the letter E in the angled brackets and then uses E as a type through the web page. The way
to read this page is to place the letter E with whatever you have put in your angled brackets (which for this
lab is the class Character).

In this class, we will use a small subset of the API. For your convenience, here are the important methods:

Method Description

v.add(E ob) Append ob to the list v. If the type of v is Vector<E>, then ob should be of
class E or a subtype of E.

v.add(int k, E ob) Change the list v to v[0..k-1], ob, v[k..]. If the type of v is Vector<E>,
then ob should be of class E or a subtype of E.

v.get(int k) Yields: v[k]
v.remove(E ob) Remove ob from the list in v (if it is there)
v.remove(int k) Remove v[k] from the list v, changing it to v[0..k-1], v[k+1..]
v.clear() Remove all elements from v

set(int k, E ob) Replace v[k] by ob

v.size() Yields: the number of elements in the list v
v.capacity() Yields: the number of elements that are currently allocated for the list v. This

can be different from the number of elements that are actually in the list v.
v.indexOf(E ob) Yields: i, where v[i] is the first occurrence of ob in the list; -1 if not in the list.
v.lastIndexOf(E ob) Yields: i, where v[i] is the last occurrence of ob in the list; -1 if not in the list.
v.toString() Yields: a comma-separated list of the elements in v, enclosed in brackets

http://docs.oracle.com/javase/6/docs/api/java/util/Vector.html


CS 1110, LAB 5: VECTOR EXERCISES 3

A History Lesson. The developers of Java knew early on that they wanted some kind of growable list, so
they created class Vector and shipped it out with Java v1.0. Later, however, they wanted to generalize the
idea of a list. So they created new classes that provide a more general implementation than Vector.

Rather than get rid of Vector (for “backward compatability” reasons, you cannot simply throw out old
stuff), the developers of Java v1.2 added new methods to class Vector so that it would be consistent with
the other, newer, classes. Many of these new methods do the same thing as the old ones. This is why you
will see some methods in the documentation for the Vector class that seem redundant – they are.

Another major change happened in Java 1.5. This is the first version of Java to support generic classes.
Before then, Vector to only hold objects whose class is Object. Since Object is the “superest” class of them
all, this was not a problem. However, it made programming with Vector much, much harder for beginners.
That is why it is important that you do not use any API for Vector that is older than Java 1.5.

2. Experimenting with Vector

Once you have downloaded VisualVector.java, you should first play with it a bit. We have already
provided you with quite a bit of code there, and this code is intended to make the lab a bit more interesting.
In particular, this is some of the first GUI code that we have seen in this course.

Look over the code that we have provided. We have defined a Vector<Character> v, which you will
use throughout this lab. You can access it from the Interactions pane of DrJava. We have also defined two
constructors, which will illustrate different qualities of Vector. Read the specifications so you understand
what each one does (according to the Vector API, the capacity increment is the amount by which the
capacity of the vector is automatically incremented when its size becomes greater than its capacity).

Do not worry about the stubbed-in methods yet (the ones you have to write); you will get to them later.

Working with VisualVector. Compile the class VisualVector and type this into the Interactions pane:

VisualVector lab = new VisualVector();

A window should appear at the top of your screen containing a drawing of numbered boxes. This drawing
represents Vector<Character> object v in class VisualVector. Note that there are 10 empty boxes,
numbered 0-9. The numbers are called the indices or indexes. You use them to refer to the objects in the
boxes.

Resize your DrJava window so it does not block the representation. In the Interactions pane, type:

> lab.v.add(new Character(’A’));

A Character object that wraps ’A’ has been added to Vector v, and you can see it in box 0.

Now type the following:

> lab.v.remove(new Character(’A’));

It is now gone from v. Note that you passed in two different objects (every time you use new it makes a new
object) to the methods add and remove. Vector uses the method equals of each element v[i] of Vector

v to find a match; for elements of class Character, v[i].equals(ob) yields true if the character in v[i] is
the same as the character in ob.



4 CS 1110, LAB 5: VECTOR EXERCISES

Note: As we said in class, the latest version of Java supports “boxing” which allows us to write

> lab.v.add(’A’);

to do the same thing as the add statement above. However, you should avoid doing this, because it is
dangerous. In particular,

> lab.v.remove(’A’);

is very bad as Java will actually try to cast ’A’ to an int (meaning an index to remove from) before it tries
to box it in a Character object.

VisualVector Exercises. Type the following command to put some more objects in Vector v:

> lab.initializeV();

Look over the Vector representation in the JFrame. Note that an object can appear many times in the
same list (’3’ and ’2’ both appear twice). In the interactions pane, try the commands on the left in the
table below. On the right, write down what the command returned (if anything) and what happened to the
Vector representation. If you do not understand why certain commands do certain things, ask!

Tip 1: Use the up arrow key to get your previous command instead of repeatedly typing in ”new Character. . ..

Tip 2: Make sure you ae watching the Vector representation when you hit Enter to execute your commands
in the Interactions pane. It will be much easier to see what happened.

Tip 3: Make sure you leave off the semicolon when you make a function call; otherwise, you will not see not
what the function returned

Command Result/Explanation

lab.v.add(new Character(’B’));

lab.v.remove(new Character(’3’));

lab.v.remove(new Character(’7’));

lab.v.indexOf(new Character(’1’))

lab.v.indexOf(new Character(’B’))

lab.v.get(5)

lab.v.get(12)

lab.v.indexOf(lab.v.get(2)) What is this call doing?

lab.v.indexOf(lab.v.get(8)) Why does this not return 8?



CS 1110, LAB 5: VECTOR EXERCISES 5

Command Result/Explanation

lab.v.firstElement()

lab.v.set(1, new Character(’O’));

lab.v.capacity()

lab.v.size()

lab.v.toString()

lab.v.trimToSize();

lab.v.setSize(12); What is in the cells that have red question marks?
Is the new capacity also 12?

3. Writing Methods to Manipulate a Vector

We have written four method stubs for you to implement; implement them. As usual, we suggest you
write and test the methods one at a time, thoroughly testing one before moving on to the next. However,
you do not need to make a VisualVectorTester JUnit class this time. You can simply use the visual
representation in the JFrame to test your code in an ad-hoc fashion. For example, after writing the swap
method, try lab.swap(0,1) and see what happens in the JFrame window.

Method Description (JavaDoc Specification)

swap(int first, int second) Swap the objects at v[first] and v[second]

moreThanOne(Character obj) Yields: “there is more than one occurrence of obj in v”
Hint: Does looking at the first and last occurrences of obj in v help?

hasExtraSpace() Yields: “there is space allotted to v that is not being used”
toString() Yields: a string that has contains the characters of v, in the order in

which they occur in v.
Precondition: v may not contain commas or spaces (see the hint below).

Important: Do not use loops or recursion (if you know what they are) in this lab. Everything can
be done using the methods of either Vector or String. Here is a hint for the last method: Use the existing
toString of class Vector, but remove the square brackets, commas, and spaces using methods of class String.
Furthermore, remove the brackets first; because of some syntax issues involving “regular expressions”, you
should not use the function replaceAll() on Strings containing brackets. Furthermore, this is the reason
for the precondition on toString().

When you are done, show your work to your TA or a consultant.


	Requirements For This Lab
	1. Understanding the Vector Class
	Basic Terminology
	The Vector API
	A History Lesson

	2. Experimenting with Vector
	Working with VisualVector
	VisualVector Exercises

	3. Writing Methods to Manipulate a Vector

