
11/26/12	

1	

Some Interpreted Languages are Compiled	

Java���
Source	

Java VM	

(Interpreter)	

App	
Java���
Bytecode	

Compiler	

Why do this?	

Speed is part of the
answer, but only part	

Issues with Preconditions/Invariants	

class Fraction(object):
 _numerator = 0 # int, hidden
 _denominator = 1 # int > 0, hidden	

 …
 @property
 def numerator(self):
 """Numerator value of Fraction�
 Invariant: must be an int"""
 return self._numerator

 @numerator.setter
 def numerator(self,value):
 assert type(value) == int
 self._numerator = value	

•  We use assert statements	

§  Raise error if violated	

§  Stops the program	

•  Does not find all errors	

§  Only when used wrong	

§  What if error in seldom

used portion of code?	

•  Performance overhead	

§  Remember Assignment 6	

§  But when needed most!	

Types of Programming Errors	

Syntactic Errors	

•  Compiler can find for you	

§  Never need to “run” code	

§  Finds error without inputs	

•  Limited to bad “grammar”	

§  Fast, but not thorough	

•  Examples:	

§  Unknown function/variable	

§  Function call w/ wrong type	

Runtime errors	

•  Can only check at run time	

§  Found by the interpreter	

§  Or OS if using machine code	

•  Can catch all errors	

§  But just saw the problems	

•  Examples:	

§  Variable outside of range	

§  Access field of null variable	

Java is a Statically Typed Language	

•  A variable is 	

§  a named memory location (box),	

§  a value (in the box), and	

§  a type (limiting what can be put in box)	

5	
x	
 Here is variable x, with value 5. ���
It can contain an int value.	
int	

20.1	
area	
 Here is variable area, with value 20.1. ���
It can contain a double value.	
double	

	

Variable names must 	

start with a letter	

	

Different	

from Python	

Variable Declarations	

•  A declaration of a variable gives the name of ���

the variable and the type of value it can contain	

	
int x;	

	
double area;	

•  Execution of an assignment statement stores a value in a variable	

	
To execute the assignment	

	
 	
<var>= <expr>; 	

	
evaluate expression <expr> and store its value in variable <var>	

	
x= x + 1;	

	

Assignment Statements	

Here is a declaration of x, indicating that it
contain an int value.	

Here is a declaration of area, indicating that
it can contain a double value.	

Evaluate expression x+1 and store its value in variable x.	

Initialization: Declaration+Assignment	

•  Can combine declaration and assignment	

	
int x = 3;	

	
	

	
double area = 2.3;	

	

	

•  In Python these are one and the same	

§  But Java separates them into two separate commands	

§  Particularly relevant with fields/attributes in classes	

Here is a declaration of x, indicating that it
contain an int value. ���
It starts with a value of 3.	

Here is a declaration of area, indicating that
it can contain a double value.���
It starts with a value of 2.3.	

11/26/12	

2	

Python Versus Java	

public class Fraction {
 // Field declarations; NOT assignments
 private int numerator; // invariant: int
 private int denominator; // invariant: > 0	

 …
 /** Numerator value of Fraction (getter)�
 * Invariant: must be an int */
 public int getNumerator() {
 return this.numerator;
 }

 /** Numerator value of Fraction (setter) */�
 public void setNumerator(int value) {
 this.numerator = value;
 } … }	

class Fraction(object):
 _numerator = 0 # int, hidden
 _denominator = 1 # int > 0, hidden	

 …
 @property
 def numerator(self):
 """Numerator value of Fraction�
 Invariant: must be an int"""
 return self._numerator

 @numerator.setter
 def numerator(self,value):
 assert type(value) == int
 self._numerator = value	

Hidden	

Not
Hidden	

Keyword, not
argument	

“docstring”	

Curly braces,
not indentation	

Return
Type	
 Param���

Type	

Other Differences with Python	

•  Everything in Java must
be inside of a class def	

•  Functions are static	

§  Lives in class, not folder	

§  Do not need an object	

•  Function call has form���
<class>.<function-call>
§  Treat the class just like ���

a you would a module	

§  Lecture 8 Example:

Anglicize.anglicize(100)

public class Anglicize {

 /** Returns: English equivalent of n. */
 public static String anglicize(int n) {
 if (n < 1000) {
 return anglicize1000(n);
 }

 // n >= 1000
 String suffix = "";
 if (n % 1000 != 0) {
 suffix = " "+anglicize1000(n % 1000);
 }
 return anglicize1000(n/1000) + suffix;
 }
 …

Static Type vs. Dynamic Type	

	

	

	

	

	

	

@105dc	

age 5 int Animal	

isOlder(Animal) toString()

getWeight() toString()
Cat(String,int)

Cat	

getNoise()

Animal(String,int)

	

	

	

	

	

	

@3cf92	

age 5 int Animal	

isOlder(Animal) toString()

toString()
Dog(String,int)

Dog	

getNoise()

Animal(String,int)

•  Types need not agree	

§  Animal a = Cat("Felix",5);
§  But contents must be an ���

instance of variable type.	

•  Compiler only knows static type	

§  Dynamic is runtime property	

§  Uses static type to check for errors	

§  This is illegal (will not compile):	

a.getWeight()
	

a	
 @105dc	
 Animal	

Casting Up and Down the Class Hierarchy	

•  How casting works in Java	

§  (int) (5.0 / 7.5)
§  (double) 6
§  double d = 5; // automatic cast

•  Can also cast class types:	

§  Animal h = new Cat("N", 5);
§  Cat c = (Cat) h;

	

	

	

	

	

	

@105dc	

age 5 int Animal	

isOlder(Animal) toString()

getWeight() toString()
Cat(String,int)

Cat	

getNoise()

Animal(String,int)

	

	

	

	

	

	

@3cf92	

age 5 int Animal	

isOlder(Animal) toString()

toString()
Dog(String,int)

Dog	

getNoise()

Animal(String,int)
Object	

Animal	

Cat	
Dog	

The Class Hierarchy
(→ means “extends” or “is a kind of”)

Static Type vs. Dynamic Type	

public class Animal {	

 /** = "this is older than h" */	

 public boolean isOlder(Animal h) {	

 return this.age > h.age; 	

 } … }	

	

	

	

	

	

	

	

@3cf92	

age 5 int Animal	

isOlder(Animal) toString()

toString()
Dog(String,int)

Dog	

getNoise()

Animal(String,int)

 Cat c = new Cat("C", 5);
 Dog d = new Dog("D", 6);
 c.isOlder(d) ?????	

isOlder	
 1	

	

h	
 @3cf92	

Animal	

	
Dynamic type of h:	

§  Type of the object/folder	

§  Matches call to definition	

	
Static type of h:	

§  Type that is declared	

§  Checks if call is legal	

Casts up the
hierarchy ���

are automatic	

Object	

Animal	

Cat	
Dog	
cast from Dog to Animal, automatically	

Casting Down the Class Hierarchy	

public class Animal {
 /** If Animal is a cat, return weight; else return 0 */
 public static double checkWeight(Animal h) {
 if () {
 return 0;
 }
 // h is a Cat
 Cat c = (Cat)h; // Downward cast
 return c.getWeight();
 } … }

checkWeight	
 1	

	

h	
 @105dc	

Animal	

	

	

	

	

	

	

@105dc	

age 5 int Animal	

isOlder(Animal) toString()

getWeight() toString()
Cat(String,int)

Cat	

getNoise()

Animal(String,int)

c	
 @105dc	

Cat	

!(h instanceof Cat)	

(Dog) h would lead to ���
a runtime error.	

You can’t cast an object to
something that it is not!	

