11/26/12

Some Interpreted Languages are Compiled

Issues with Preconditions/Invariants

= Java VM
.j ava — (Interpreter)
_ _CLASS
Java Java A
Source Bytecode PP

Why do this?

Speed is part of the
answer, but only part

* We use assert statements
= Raise error if violated
= Stops the program

* Does not find all errors
= Only when used wrong

= What if error in seldom
used portion of code?

¢ Performance overhead
= Remember Assignment 6
= But when needed most!

class Fraction(object):
_numerator =0 # int, hidden
_denominator = 1 # int > 0, hidden

@property

def numerator(self):
"""Numerator value of Fraction
Invariant: must be an int""
return self._numerator

@numerator.setter

def numerator(self,value):
assert type(value) == int
self._numerator = value

Types of Programming Errors

Java is a Statically Typed Language

Syntactic Errors

Runtime errors

* Compiler can find for you
= Never need to “run” code
= Finds error without inputs

¢ Limited to bad “grammar”
= Fast, but not thorough

* Examples:
= Unknown function/variable

= Function call w/ wrong type

¢ Can only check at run time

= Found by the interpreter

= Or OS if using machine code
¢ Can catch all errors

= But just saw the problems

* Examples:
= Variable outside of range
= Access field of null variable

¢ A variable is

= a named memory location (box),
= a value (in the box), and

Different

from Python

-[a type (limiting what can be put in box)]

x int

Here is variable x, with value 5.

It can contain an int value.

Variable names must
start with a letter

double

Here is variable area, with value 20.1.
It can contain a double value.

Variable Declarations

Initialization: Declaration+Assignment

* A declaration of a variable gives the name of
the variable and the type of value it can contain

int x; Here is a declaration of X, indicating that it
contain an int value.

double area;

Here is a declaration of area, indicating that

it can contain a double value.

Assignment Statements

e Execution of an assignment statement stores a value in a variable

To execute the assignment
<var>= <expr>;

evaluate expression <expr> and store its value in variable <var>

x=x+1; Evaluate expression x+1 and store its value in variable x.

* Can combine declaration and assignment

intx =3;

Here is a declaration of x, indicating that it

contain an int value.
It starts with a value of 3.

double area =2.3; Here is a declaration of area, indicating that
it can contain a double value.
It starts with a value of 2.3.

¢ In Python these are one and the same
= But Java separates them into two separate commands

= Particularly relevant with fields/attributes in classes

Python Versus Java

class Fraction(object): public class Fraction {
_numerator =0 # int, hidden // Field declarations; NOT assignments
_denominator = 1 # int > 0, hidden t numerator; // invariant: int
private int denominator; // invariant: > 0
@property
def numerator(self):
"""Numerator value of Fraction
Invariant: must be an int""
return self._numerator r
} Keyword, not

argument
/** Numerator value of Fraction (setter) */

assert type(value) == int public{void)setNumerator{int)value) (
self._numerator = value is.numerator = value; Param
ype
b} Curly braces, Type
not indentation

Not

) /** Numerator value of Fraction (getter)
Hidden

* Invariant: must be an int */

fint getNumerator() {[« N
rL ({ ‘docstring’

@numerator.setter
def numerator(self,value):

11/26/12

Other Differences with Python

* Everything in Java must ~ Public class Anglicize {

be inside of a class def /** Returns: English equivalent of n. */

publiestatic String anglicize(int n) {

¢ Functions are static (< 1000) {

= Lives in class, not folder return anglicize1000(n);
= Do not need an object }
. //1>=1000
* Function call has form String suffix = "
<class>.<function-call> if (0 % 1000 1= 0) {

= Treat the class just like suffix = " "+anglicize1000(n % 1000);

a you would a module
= Lecture 8 Example:)
Anglicize.anglicize(100)

}
return anglicize1000(n/1000) + suffix;

Static Type vs. Dynamic Type

@105dc

» Types need not agree
= Animal a = Cat("Felix",5);
= But contents must be an isOlder(Animal) toString()
instance of variable type.

Cat(String,int) getNoise()
Animal getWeight() toString()

» Compiler only knows static type @3cf92

= Dynamic is runtime property o
= Uses static type to check for errors :g;\::i:::i;; 3 toString0
= This is illegal (will not compile):

a.getWeight() Dog(Stringint) getNoise()
toString()

Casting Up and Down the Class Hierarchy

@105dc

* How casting works in Java
" (int) 8.0/ 7.8) --An;mal(S\ring,inl)
= (double) 6 isOlder(Animal) toString()
* doubled=5; //automatic cast

Cat(String,int) getNoise()

* Can also cast class types: aerWeighil) po—

= Animal h = new Cat("N", 5);
= Catc=(Cat) h;

Object =
T Animal(String,int)
The Class Hierarchy Animal isOlder(Animal) _ toString()
(— means “extends” or “is a kind of™")
Dog Cat Dog(String,int) getNoise()

toString()

Static Type vs. Dynamic Type

@3cf92

public class Animal {
/ "this is older than h" */

public boolean isOlder(Animal h) { Animal(String,int)
isOlder(Animal) toString()

return this.age > h.age;

Yooy L TR

getNoise()

Cat ¢ = new Cat("C", B); toString()
Dog d = new Dog('D", 6); Dynamlc‘type pf h E—
c.isOlder(d) 2?7??? = Type of the object/folder hierarchy

= Matches call to definition are automatic

-

[isOtder | [1] static type of h: Object
h |~ = Type that is declared N T "
= Checks if call is legal /n'l,",{

Animal 4

cast from Dog to Animal, automatically Dog Cat

Casting Down the Class Hierarchy

public class Animal { @105de
/** If Animal is a cat, return weight; else return 0 */
public static double checkWeight(Animal h) { Animal(String,int)
if (!(h instanceof Cat)) { isOlder(Animal) toString()
return 0;

) . Cat(String,int) getNoise()
//his aCat getWeight() toString()
Cat ¢ = (Cat)h; // Downward cast
return c.getWeight();

b}

(Dog) h would lead to

a runtime error.
checkWeight \L

You can’t cast an object to
something that it is not!

