
Callbacks & ���
Stateful Controllers	

Lecture 24 	
	

Model	

• 	
Defines and
	
manages the data	

• 	
Responds to the
	
controller requests	

View	

• 	
Displays model to
	
the user	

• 	
Provides interface
	
for the controller	

Controller	

• 	
Updates model in
	
response to events	

• 	
Updates view with
	
model changes	
	

Model-View-Controller Pattern	

Calls the
methods or	

functions of	

11/20/12	
 2	
Callbacks & Controllers	

Division
can apply
to classes

or modules	

MVC in this Course	

Model	

•  A3: Color classes	

§  RGB, CMYK & HSV	

•  A4: Turtle, Pen	

§  Window does the drawing	

•  A5: Matrix, Vector	

•  A6: ImageArray	

•  A7: Ball, Paddle, Bricks	

Controller	

•  A3: Functions in a3.py	

§  No need for classes	

•  A4: Functions in a4.py	

§  No need for classes	

•  A5: Nothing you wrote	

•  A6: ImageProcessor	

•  A7: Breakout	

11/20/12	
 Callbacks & Controllers	
 3	

MVC in this Course	

Model	

•  A3: Color classes	

§  RGB, CMYK & HSV	

•  A4: Turtle, Pen	

§  Window does the drawing	

•  A5: Matrix, Vector	

•  A6: ImageArray	

•  A7: Ball, Paddle, Bricks	

Controller	

•  A3: Functions in a3.py	

§  No need for classes	

•  A4: Functions in a4.py	

§  No need for classes	

•  A5: Nothing you wrote	

•  A6: ImageProcessor	

•  A7: Breakout	

11/20/12	
 Callbacks & Controllers	
 4	

When need functions	

and when need classes?	

A Standard GUI Application	

Update the display	

No major computation	

Animates the	

application,	

like a movie	

Check for user input	

Process that user input	

Update the models	

11/20/12	
 Callbacks & Controllers	
 5	

A Standard GUI Application	

Update the display	

No major computation	

Check for user input	

Process that user input	

Update the models	

Controller	

View	

Event���
Loop	

while-loop	

11/20/12	
 Callbacks & Controllers	
 6	

Must We Write this Loop Each Time?	

while program_is_running:
 # Get information from mouse/keyboard
 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen
 # Handled by OS/GUI libraries
11/20/12	
 Callbacks & Controllers	
 7	

Must We Write this Loop Each Time?	

while program_is_running:
 # Get information from mouse/keyboard
 # Handled by OS/GUI libraries

 # Your code goes here

 # Draw stuff on the screen
 # Handled by OS/GUI libraries
11/20/12	
 Callbacks & Controllers	
 8	

Why do we need to
write this each time?	

Would like to
“plug in” code	

print 'Hello '+n+'!'

Function Names are Variables	

•  Calling a function	

§  Provide arguments in ()
§  Executes the body	

•  Passing a function	

§  Assign another variable	

§  Use the name without ()

•  Example:	

>>> x = greet
>>> x('Walker')
Hello Walker!

 def greet(n):
 print 'Hello '+n+'!'

11/20/12	
 Callbacks & Controllers	
 9	

43001122	
greet	

43001122	

function	

Body stored ���
in heap space	

Callback Functions	

•  Given: predefined code
that calls some function	

§  But function not defined	

§  You want to replace it

with your function	

•  Assign that function to

the name of yours	

§  When called, it calls back

to your function definition	

§  Sort of like overriding	

§  But can’t get old version	

callback = <your function>
…
while program_running:
 # Get input
 # Your code goes here
 callback()
 # Draw	

11/20/12	
 Callbacks & Controllers	
 10	

See callback.py

Application: Buttons	

•  Buttons in Kivy all have ���
a special attribute	

§  Named on_press
§  Stores a function 	

•  Called on button press	

§  Assign it what you want	

•  Standard for GUI apps	

§  Libraries do hard work	

§  Customize behavior ���

w/ callback functions	

class ButtonMain(Widget):
 """Kivy window with a single button"""

 def __init__(self,**kw):
 """Constructor: make panel w/ button"""
 super(ButtonMain,self).__init__(**kw)
 button = Button(text='Click Me!',�
 size_hint=(1,1))
 self.add_widget(button)

 # Set the callback function
 button.on_press = self.my_callback

 def my_callback(self):
 """Function to call on button press."""
 print 'Hello World!'

11/20/12	
 Callbacks & Controllers	
 11	

Loop Invariants Revisited	

Normal Loops	

 x = 0
 i = 2
 # x = sum of squares of 2..i
 while i <= 5:
 x = x + i*i
 i = i +1
 # x = sum of squares of 2..5
	

Loops & Callbacks	

while program_running:
 # Get input
 # Your code goes here
 callback()
 # Draw	

11/20/12	
 Callbacks & Controllers	
 12	

Properties of
“external” vars	

What are the 	

“external” vars?	

Loop Invariants Revisited	

Normal Loops	

 x = 0
 i = 2
 # x = sum of squares of 2..i
 while i <= 5:
 x = x + i*i
 i = i +1
 # x = sum of squares of 2..5
	

Loops & Callbacks	

while program_running:
 # Get input
 # Your code goes here
 callback()
 # Draw	

11/20/12	
 Callbacks & Controllers	
 13	

Properties of
“external” vars	

What are the 	

“external” vars?	

If callback a method,
then it has attributes	

Attribute Invariants = Loop Invariants	

•  Fields are only way to
store value between calls	

§  Not part of call frame	

§  Variables outside loop	

•  So all callback functions
should be methods	

§  Variable stores function

definition and the object	

§  Knows to call method on

that particular object	

§  Uses its fields for state	

callback = obj.method
…
inv: obj attributes are …
while program_running:
 # Get input
 # Your code goes here
 callback()
 # Draw
post: obj attributes are …
	

11/20/12	
 Callbacks & Controllers	
 14	

Example: Animation	

•  Callback: animate(…)
§  Called 60x a second	

§  Moves back and forth	

•  Animate is a method 	

§  Associated with an object	

§  Object has changing state	

•  Examples of state	

§  Ellipse position	

§  Current velocity	

§  Current animation step	

 def animate(self,dt):
 """Animate the ellipse back & forth"""
 if self._steps == 0:
 # Initialize
 …
 elif self._steps > ANIMATION_STEPS/2:
 # Move away
 x = self._ellipse.pos[0]
 y = self._ellipse.pos[1]
 self._ellipse.pos = (x+self._vx,y+self._vy)
 self._steps = self._steps - 1
 else: # Move back
 x = self._ellipse.pos[0]
 y = self._ellipse.pos[1]
 self._ellipse.pos = (x-self._vx,y-self._vy)
 self._steps = self._steps - 1

11/20/12	
 Callbacks & Controllers	
 15	

Example: Animation	

•  Callback: animate(…)
§  Called 60x a second	

§  Moves back and forth	

•  Animate is a method 	

§  Associated with an object	

§  Object has changing state	

•  Examples of state	

§  Ellipse position	

§  Current velocity	

§  Current animation step	

 def animate(self,dt):
 """Animate the ellipse back & forth"""
 if self._steps == 0:
 # Initialize
 …
 elif self._steps > ANIMATION_STEPS/2:
 # Move away
 x = self._ellipse.pos[0]
 y = self._ellipse.pos[1]
 self._ellipse.pos = (x+self._vx,y+self._vy)
 self._steps = self._steps - 1
 else: # Move back
 x = self._ellipse.pos[0]
 y = self._ellipse.pos[1]
 self._ellipse.pos = (x-self._vx,y-self._vy)
 self._steps = self._steps - 1

11/20/12	
 Callbacks & Controllers	
 16	

See animate.py

Kivy requires argument
in animation callbacks	

State Across Multiple Callbacks	

•  Sometimes have more than
one callback function	

•  Example: touch events	

§  on_touch_down:�

User presses mouse (or a���
finger); does not release	

§  on_touch_up:�
Releases mouse (or finger)	

§  on_touch_move:�
Moves mouse (or finger)	

•  State needed to track ���
change in touch over time	

11/20/12	
 Callbacks & Controllers	
 17	

See touch.py

Previous
Touch	

Current
Touch	

State Across Multiple Callbacks	

 # None or previous touch
 _anchor = None

 def on_touch_down(self,touch):
 # Track touch state
 self._anchor = (touch.x,touch.y)

 def on_touch_up(self,touch):
 # Nothing to track
 self._anchor = None

 def on_touch_move(self,touch):
 if not self._anchor is None:
 self.drawLine(self._anchor[0], self._anchor[1],
 touch.x,touch.y,LINE_COLOR)
 self._anchor = (touch.x,touch.y)

11/20/12	
 Callbacks & Controllers	
 18	

See touch.py

Previous
Touch	

Current
Touch	

