Lecture 23
Sorting

Announcements for This Lecture

Assignments

- A5 is now graded
- Mean: 95, Median: 97
- Average Time: 4-5 hours
- Longer than I expected...
- A6 is due Friday
- Just activated in CMS
- Should be on stenography
- A7 due Monday, Dec. 3
- Week after classes

Next Two Weeks

- Reading
- Chapter 19: Tkinter
- Alternative to Kivy
- But similar concepts
- Next Tue is important!
- Will need it for A7
- No lab next week
- This week is "last lab"
- Lab final week is optional

Announcements for This Lecture

Assignments

- A6 is due Tomorrow
- Hopefully you are close
- Trying to add consultants
- Keep reading Piazza
- A7 due Monday, Dec. 3
- Week after classes
- Online Saturday
- Do not need lecture until the paddle task

Next Two Weeks

- Reading
- Chapter 19: Tkinter
- Alternative to Kivy
- But similar concepts
- Next Tue is important!
- Will need it for A7
- Unifies attribute invariants and loop invariants
- Last major topic of course

Binary Search

- Look for value v in sorted segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$

New statement of the invariant guarantees that we get leftmost position of v if found

- if v is 3 , set i to 0
- if v is 4 , set i to 5
- if v is 5 , set i to 7
- if v is 8 , set i to 10

Binary Search

Looking at $\mathrm{b}[\mathrm{i}]$ gives linear search from left.
Looking at $\mathrm{b}[\mathrm{j}-1]$ gives linear search from right.
Looking at middle: $\mathrm{b}[(\mathrm{i}+\mathrm{j}) / 2]$ gives binary search.

Sorting: Arranging in Ascending Order

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Insertion Sort:

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \text { while } \mathrm{i}<\mathrm{n}: \\
& \quad \begin{array}{l}
\# \text { Push b[i] down into its } \\
\# \text { sorted position in b[0..i] } \\
\mathrm{i}=\mathrm{i}+1
\end{array}
\end{aligned}
$$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$j=$ i
while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$
swap shown in the lecture about lists

The Importance of Helper Functions

$$
i=0
$$

while i < n :
push_down(b,i)

$$
\mathrm{i}=\mathrm{i}+1
$$

def push_down(b, i):

$$
j=i
$$

while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$

Can you understand

$\mathrm{i}=0 \quad$ all this code below?
while i < n :

$$
\mathrm{j}=\mathrm{i}
$$

while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$$
\text { temp }=b[j]
$$

$$
b[j]=b[j-1]
$$

$$
b[j-1]=\text { temp }
$$

$$
j=j-l
$$

$$
\mathrm{i}=\mathrm{i}+1
$$

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
$\mathrm{j}=\mathrm{i}$
while $\mathrm{j}>0$:
if $b[j-1]>b[j]$:
$\operatorname{swap}(b, j-1, j)$
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2$: 2 swaps
- Pushdown is in a loop
- Called for i in 0..n

Insertion sort is an n^{2} algorithm

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=\mathbf{1 0}$	$\mathrm{n}=100$	$\mathrm{n}=1000$
n	0.01 s	0.1 s	1 s
$\mathrm{n} \log \mathrm{n}$	0.016 s	0.32 s	4.79 s
n^{2}	0.1 s	10 s	16.7 m
n^{3}	1 s	16.7 m	11.6 d
2^{n}	1 s	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Major Topic in 2110: Beyond scope of this course

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Selection Sort:

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
\# Find minimum in b[i..]
\# Move it to position i
$\mathrm{i}=\mathrm{i}+\mathrm{l}$

\square| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 4 | 6 | 6 | 7 | 9 | 9 | 8 | 8 |

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 6 | 6 | 9 | 9 | 8 | 8 |

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Selection Sort:

inv:

First segment always contains smaller values
$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:

$$
\begin{aligned}
& \mathrm{j}=\mathrm{index} \text { of } \min \text { of } b[\mathrm{i} . \mathrm{n}-1] \\
& \operatorname{swap}(b, i, \mathrm{j}) \\
& i=i+1
\end{aligned}
$$

	n								
24	4	6	6	7	9	9	8	8	9

Selection sort also is an n^{2} algorithm

Partition Algorithm

- Given a list segment $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $b[h . . k]$ and store in j to truthify post:

- x is called the pivot value
- x is not a program variable
- denotes value initially in b[h]

Sorting with Partitions

- Given a list segment $b[h . . k]$ with some value x in $b[h]:$

- Swap elements of $b[h . . k]$ and store in j to truthify post:

Partition Recursively

Recursive partitions = sorting

- Called QuickSort (why???)
- Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):
"""Sort the array fragment b[h..k]"""
if $b[h . \mathrm{k}]$ has fewer than 2 elements: return
$j=\operatorname{partition}(b, h, k)$
\# b[h.j-l] <= b[j] <= b[j+l..k]
\# Sort b[h.j-l] and b[j+l..k]
quick_sort (b, h, j-l)
quick_sort (b, j+l, k)

- Worst Case:

 array already sorted- Or almost sorted
- n^{2} in that case
- Average Case: array is scrambled
- $\mathrm{n} \log \mathrm{n}$ in that case
- Best sorting time!
pre: b

\mathbf{x}	$?$	
h	i i+1	k

post: b

$<=\mathbf{X}$	\mathbf{X}	$>=\mathbf{X}$

Final Word About Algorithms

- Algorithm:
- Step-by-step way to do something
- Not tied to specific language

List Diagrams

- Implementation:
- An algorithm in a specific language
- Many times, not the "hard part"

Demo Code

- Higher Level Computer Science courses:
- We teach advanced algorithms (pictures)
- Implementation you learn on your own

