
Designing Sequence���
Algorithms	

Lecture 22 	
	

Announcements for This Lecture	

Assignments	
 Prelim 2	

•  High scores again	

§  Mean: 83, Median: 86	

§  150/404 scored 90+	

§  Historical mean: 76	

§  For-loop, not recursion hard	

•  But good grade distribution	

§  A: 90+	

§  B: Mid-low 70s to high 80s	

§  C: 50 to mid-low 70s	

11/8/12	
 2	
Sequence Algorithms	

•  A5 graded by weekend	

§  We just starting on it	

•  Should be working on A6	

§  Due week from Today	

§  Work on a method a day	

§  Should start stenography ���

no later than Sunday	

§  Friday extension?	

•  A7 due after class ends	

Horizontal Notation for Sequences	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	
b 	

0 h k	

 	

h h+1	

(h+1) – h = 1	

 	
b <= sorted >=	

0 k len(b)	

11/8/12	
 Sequence Algorithms	
 3	

Developing Algorithms on Sequences	

•  Specify the algorithm by giving its precondition ���
and postcondition as pictures.	

•  Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition 	

§  The invariant is true at the beginning and at the end	

•  The four loop design questions (memorize them)	

1.  How does loop start (how to make the invariant true)?	

2.  How does it stop (is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	

11/8/12	
 Sequence Algorithms	
 4	

Generalizing Pre- and Postconditions	

•  Dutch national flag: tri-color 	

§  Sequence of 0..n-1 of red, white, blue "pixels"	

§  Arrange to put reds first, then whites, then blues 	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

Make the red, white, blue
sections initially empty: 	

•  Range i..i-1 has 0 elements	

•  Main reason for this trick	

Changing loop variables turns
invariant into postcondition.	

	

	
11/8/12	
 Sequence Algorithms	
 5	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	
 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

(values in k..j-1 ���
 are unknown)	

>= 0	

0 k j n	

inv: b	
 ?	
 >= 0	
< 0	

pre: j = 0	

post: j = n	

pre: k = 0, ���
 j = n	

post: k = j	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h i k	

 1 2 3 1 3 4 5 6 8	
b	

h i k	

or	

•  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

11/8/12	
 Sequence Algorithms	
 7	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1 	

11/8/12	
 Sequence Algorithms	
 8	

Partition Algorithm Implementation	

def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
	

11/8/12	
 Sequence Algorithms	
 9	

partition(b,h,k), not partition(b[h:k+1])	

Remember, slicing always copies the list!	

We want to partition the original list	

Partition Algorithm Implementation	

def partition(b, h, k):
 """Partition list b[h..k] around a pivot x = b[h]"""
 i = h; j = k+1; x = b[h]
 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
 while i < j-1:
 if b[i+1] >= x:
 # Move to end of block.
 _swap(b,i+1,j-1)
 j = j - 1
 else: # b[i+1] < x
 _swap(b,i,i+1)
 i = i + 1
 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
 return i
	

11/8/12	
 Sequence Algorithms	
 10	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

1 2 1 3 0 5 6 3 8	

h i j k	

1 2 1 0 3 5 6 3 8	

h i j k	

Dutch National Flag Variant	

•  Sequence of integer values	

§  ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive	

§  Only rearrange part of the list, not all	

? 	

h k	

pre: b	

 < 0 = 0 > 0 	

h k	

post: b	

inv: b < 0 ? = 0 > 0	

h t i j k	

pre: t = h, ���
 i = k+1,	

 j = k	

post: t = i	

Final Exam: 	

Be prepared for variants	

11/8/12	
 Sequence Algorithms	
 11	

Dutch National Flag Algorithm	

def dnf(b, h, k):
 """Returns: partition points as a tuple (i,j)"""
 t = h; i = k+1, j = k;
 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
 while t < i:
 if b[i-1] < 0:
 swap(b,i-1,t)
 t = t+1
 elif b[i-1] == 0:
 i = i-1
 else:
 swap(b,i-1,j)
 i = i-1; j = j-1
 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
 return (i, j)
11/8/12	
 Sequence Algorithms	
 12	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

Linear Search	

•  Vague: Find first occurrence of v in b[h..k-1].	

•  Better: Store an integer in i to truthify result condition post:	

	
post: 1. v is not in b[h..i-1]	

 	
 2. i = k OR v = b[i]	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

11/8/12	
 Sequence Algorithms	
 13	

Linear Search	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

 v not here ? 	

h i k 	

 inv: b	

11/8/12	
 Sequence Algorithms	
 14	

Linear Search	

def linear_search(b,c,h):
 """Returns: first occurrence of c in b[h..]"""
 # Store in i the index of the first c in b[h..]
 i = h

 # invariant: c is not in b[0..i-1]
 while i < len(b) and b[i] != c:
 i = i + 1

 # post: b[i] == c and c is not in b[h..i-1]
 return i if i < len(b) else -1

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

b c is not here	
 c
h i n

result (post)	

b c is not here	

h i n

invariant (inv)	

c is in here	

b[i] == c

Binary Search	

• Vague: Look for v in sorted sequence segment b[h..k].	

• Better:	

§ Precondition: b[h..k-1] is sorted (in ascending order). 	

§ Postcondition: b[h..i] <= v and v < b[i+1..k-1] 	
	

• Below, the array is in non-descending order:	

? 	

h k	

pre: b	

<= v	

h i k	

post: b	

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half	

> v	

< v	

h i j k	

inv: b	
 > v	
?	

11/8/12	
 Sequence Algorithms	
 16	

Extras Not Covered in Class	

11/8/12	
 Sequence Algorithms	
 17	

Loaded Dice	

•  Sequence p of length n represents n-sided die	

§  Contents of p sum to 1	

§  p[k] is probability die rolls the number k	

•  Goal: Want to “roll the die”	

§  Generate random number r between 0 and 1	

§  Pick p[i] such that p[i-1] < r ≤ p[i] 	

0.1	
 0.1	
 0.1	
 0.1	
 0.3	
 0.3	

1	
 2	
 3	
 4	
 5	
 6	

weighted d6, favoring 5, 6	

0.1	
 0.1	
 0.1	
 0.1	
 0.3	
 0.3	

0.1	
 0.2	
 0.3	
 0.4	
 0.7	
 1.0	

11/8/12	
 Sequence Algorithms	
 18	

Loaded Dice	

•  Want: Value i such that p[i-1] < r <= p[i]	

•  Same as precondition if i = 0	

•  Postcondition is invariant + false loop condition	

?	

0 n	

pre: b	

r > sum	

0 i n 	

 post: b	
 r <= sum	

r > sum	

0 i n 	

 inv: b	
 ?	

11/8/12	
 Sequence Algorithms	
 19	

inv	

1	
0	

p[0] p[1] p[i]

… …
p[n–1]

r is not here	
 pEnd

Loaded Dice	

def roll(p):
 """Returns: randint in 0..len(p)-1; i returned with prob. p[i]
 Precondition: p list of positive floats that sum to 1."""
 r = random.random() # r in [0,1)
 # Think of interval [0,1] divided into segments of size p[i]
 # Store into i the segment number in which r falls.
 i = 0; sum_of = p[0]
 # inv: r >= sum of p[0] .. p[i–1]; pEnd = sum of p[0] .. p[i]
 while r >= sum_of:
 sum_of = sum_of + p[i+1]
 i = i + 1

 # post: sum of p[0] .. p[i–1] <= r < sum of p[0] .. p[i]
 return i r < sum

post	
r
1	
0	

p[0] p[1] p[i]

… …
p[n–1]

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep
inv true?	

Reversing a Sequence	

 1 2 3 4 5 6 7 8 9 9 9 9 	
b	

h k	

change:	

into	
 9 9 9 9 8 7 6 5 4 3 2 1	
b	

h k	

 not reversed	

 h k	

pre: b	

reversed	

 h k	

post: b	

not reversed	

 h i j k	

inv: b	
 swapped	
swapped	

