

Generalizing Pre- and Postconditions

- Dutch national flag: tri-color
- Sequence of $0 . . n-1$ of red, white, blue "pixels"
- Arrange to put reds first, then whites, then blues

Generalizing Pre- and Postconditions

- Put negative values before nonnegative ones
pre:
 and $n>=0$ are unknown)
post:

Partition Algorithm

- Given a sequence $b[h . . k]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

post: b	<= x	x	>= x	

inv: b

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: b[h.i-1] < x, b[i] = x, b[j..k] >= x
while i < j -1:
if $b[i+1]>=x$:
\# Move to end of block.
${ }^{-}$swap $(b, i+1, j-1)$
$\mathrm{j}=\mathrm{j}-\mathrm{l}$
else: \#b[i+1]<x
${ }^{-} \operatorname{swap}(\mathrm{b}, \mathrm{i}, \mathrm{i}+1)$
$i=i+1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-1]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[i+1 . \mathrm{k}]>=\mathrm{x}$
return i

Dutch National Flag Algorithm	
```\(\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})\) : """Returns: partition points as a tuple (i,j)""" \(\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}\); \# inv: b[h.t-1] < 0, b[t.i.i-1] ?, b[i...j] \(=0, b[j+1 . . \mathrm{k}]>0\) while t < i : if \(b[i-1]<0\) : swap(b,i-1,t) \(\mathrm{t}=\mathrm{t}+\mathrm{l}\) elif \(\mathrm{b}[\mathrm{i}-1]=0\) : \(\mathrm{i}=\mathrm{i}-\mathrm{l}\) else: \(\operatorname{swap}(b, i-1, j)\) \(\mathrm{i}=\mathrm{i}-\mathrm{l} ; \mathrm{j}=\mathrm{j}-\mathrm{l}\) \# post: \(\mathrm{b}[\mathrm{h} . \mathrm{i}-1 \mathrm{l}]<0, \mathrm{~b}[\mathrm{i} . \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+1 . \mathrm{k}]>0\) return (i, j)```	$$



Linear Search				
h				k
pre: b	?			
h		i		k
post: b	v not here	v	?	
OR	h			k
	v not here			
	i			k
inv: b	v not here		?	



## Binary Search

- Vague: Look for v in sorted sequence segment $\mathrm{b}[\mathrm{h} . \mathrm{k}]$.
- Better:
- Precondition: $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$ is sorted (in ascending order).
- Postcondition: $\mathrm{b}[\mathrm{h} . \mathrm{i}]<=\mathrm{v}$ and $\mathrm{v}<\mathrm{b}[\mathrm{i}+1 . . \mathrm{k}-1]$
- Below, the array is in non-descending order:


Called binary search because each iteration of the loop cuts the array segment still to be processed in half

