Lecture 20

While Loops

Announcements for This Lecture

Assignments

- A4 is (mostly) graded
- Mean: 89, Median: 92
- Mean Time: 7-8 hours
- A5 graded next week
- Will finish it after exam
- If you need it to study, take your solution to a consultant
- A6 is now posted
- Due two weeks from today

Prelim 2

- Tuesday 7:30-9pm
- A-Q (Kennedy 1116)
- R-T (Warren 131)
- U-Z (Warren 231)
- Review Session Sunday
- 4-6pm in Room TBA
- Solutions posted afterwards
- Make-ups announced Fri
- Still looking at conflicts

Recall: For Loops

\# Print contents of seq
$\mathrm{x}=\mathrm{seq}[0]$
print x
$\mathrm{x}=\mathrm{seq}[1]$
print x
$x=\operatorname{seq}[\operatorname{len}(\operatorname{seq})-1]$
print x

- Remember:
- Cannot program ...
- Reason for recursion

The for-loop:

 for x in seq: print x- Key Concepts
- loop sequence: seq
- loop variable: x
- body: print x
- Also called repetend

Important Concept in CS: Doing Things Repeatedly

1. Process each item in a sequence

- Compute aggregate statistics fo for x in sequence: such as the mean, median, stand process x
- Send everyone in a Facebook group air appontment ume

2. Perform n trials or get n samples.

- A4: draw a triangle six times to n for x in range(n):
- Run a protein-folding simuram do next thing

3. Do something an unknown number of times

- CUAUV team, vehicle keeps moving until reached its goal

Beyond Sequences: The while-loop

while <condition>:

statement 1
repetend or body
statement n

- Relationship to for-loop
- Broader notion of "still stuff to do"
- Must explicitly ensure condition becomes false

while Versus for

\# process range b.c
for k in range(b,c+l)
process k
\# process range b..c
$\mathrm{k}=\mathrm{b}$
while $\mathrm{k}<=\mathrm{c}$:
process k

Must remember to increment
$\mathrm{k}=\mathrm{k}+\mathrm{l}$

- Makes list c+l-b elements
- List uses up memory
- Impractical for large ranges
- Just needs an int
- Much less memory usage
- Best for large ranges

Note on Ranges

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains 2,3,4.
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

Contains $5+1-2=4$ values
Contains $4+1-2=3$ values
Contains $3+1-2=2$ values
Contains $2+1-2=1$ values
A: nothing
B: 2,1
C: 1
D: 2
E: something else

Note on Ranges

- m..n is a range containing $\mathrm{n}+1-\mathrm{m}$ values
- $2 . .5$ contains $2,3,4,5$.
- $2 . .4$ contains 2,3,4.
- $2 . .3$ contains 2,3 .
- $2 . .2$ contains 2.
- $2 . .1$ contains ???

Contains $5+1-2=4$ values
Contains $4+1-2=3$ values
Contains $3+1-2=2$ values
Contains $2+1-2=1$ values

- The notation m..n, always implies that $\mathrm{m}<=\mathrm{n}+1$
- So you can assume that even if we do not say it
- If $m=n+1$, the range has 0 values

while Versus for

\# incr seq elements
for k in range(len(seq)): $\operatorname{seq}[k]=\operatorname{seq}[k]+1$

Makes a second list.
\# incr seq elements $\mathrm{k}=0$
while $\mathrm{k}<\operatorname{len}(\mathrm{seq})$: seq[k] $=$ seq[k]+1
$\mathrm{k}=\mathrm{k}+\mathrm{l}$
while is more flexible, but is much tricker to use

Patterns for Processing Integers

range a..b-1

$i=a$
while $\mathrm{i} \varangle \mathrm{b}$:
process integer I
$\mathrm{i}=\mathrm{i}+1$

```
# store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):
    if s[i] == '/':
        count= count + l
    i= i +l
    # count is # of '/'s in s[0..s.length()-1]
```


range c..d

$\mathrm{i}=\mathrm{c}$
while $\mathrm{i}=\mathrm{d}$: process integer I

$$
\mathrm{i}=\mathrm{i}+\mathrm{l}
$$

$$
\begin{aligned}
& \text { \# Store in double var. } \mathrm{v} \text { the sum } \\
& \# \mathrm{l} / \mathrm{l}+\mathrm{l} / 2+\ldots+1 / \mathrm{n} \\
& \mathrm{v}=0 ; \quad \# \text { call this } 1 / 0 \text { for today } \\
& \mathrm{i}=0 \\
& \text { while } \mathrm{i}<=\mathrm{n} \text { : } \\
& \begin{array}{l}
\mathrm{v}=\mathrm{v}+1.0 / \mathrm{i} \\
\mathrm{i}=\mathrm{i}+1
\end{array} \\
& \# \mathrm{v}=1 / \mathrm{l}+1 / 2+\ldots+\mathrm{l} / \mathrm{n}
\end{aligned}
$$

While-Loops and Flow

print 'Before while'
count $=0$
$\mathrm{i}=0$
while i < 3:
print 'Start loop '+`i'
count $=$ count +I
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
print 'End loop '
print 'After while'

Output:

Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

