12/5/12

Recall: For Loops

Beyond Sequences: The while-loop

Print contents of seq The for-loop:
x = seq[0] .

print x for x'ln seq:

x = seq(l] | print x
print x

* Key Concepts

x = seq(len(seq)-1]
= loop sequence: seq

print x
= loop variable: x

= body: print x
= Also called repetend

* Remember:
= Cannot program ...
= Reason for recursion

while <condition>:

statement 1 repetend or body

statement n

* Relationship to for-loop
= Broader notion of
“still stuff to do”
= Must explicitly ensure
condition becomes false

while Versus for

Note on Ranges

process range b..c # process range b..c

for k in range(b,c+1) k=D
process k while k <=c:
process k

{ Must remember to increment 171{ =k+1

* Makes list ¢+1-b elements ¢ Just needs an int

¢ List uses up memory * Much less memory usage

¢ Impractical for large ranges * Best for large ranges

° m..n is a range containing n+1-m values
= 2.5 contains 2,3,4,5.
= 2.4 contains 2,3,4.
= 2.3 contains 2, 3.

Contains 5+1 — 2 =4 values
Contains 4+1 — 2 = 3 values
Contains 3+1 — 2 =2 values
= 2.2 contains 2. Contains 2+1 — 2 = 1 values

= 2..1 contains ???

* The notation m..n, always implies that m <= n+1
= So you can assume that even if we do not say it
= If m = n+1, the range has 0 values

while Versus for

Patterns for Processing Integers

incr seq elements # incr seq elements
for k in range(len(seq)): k=0

\ seq[k] = seq[k]+1 while k < len(seq):
seq(k] = seq[k]+1
k=k+l

Makes a second list.

while is more flexible, but

is much tricker to use

range a..b-1 range c..d
i=a i=¢
while i([<Jb: while i(<=)d:
process integer I process integer I
i=i+l i=i+1

store in count # of '/'s in String s
count = 0

i=0
while i < len(s):
if s[i] == /"

| count= count + 1
=1+l
count is # of '/'s in s[0..s.length()-1]

Store in double var. v the sum
#1/1 +1/2+..+1/n

v=0; # call this 1/0 for today
i=0

while i <=n:

v=v+10/i

i=1+1

#v=1/1 +1/&8+.+1/n

