
Object Oriented ���
Design	

Lecture 19 	
	

Announcements for Today	

Reading	

•  Today: See reading online	

•  Thursday: Chapter 7	

Assignments	

•  A4 still being graded	

§  Hope to be done by Thurs	

§  Also looking at surveys	

•  A5 due tomorrow	

§  Remember to upgrade ���

your CornellExtensions	

§  Extra consultants today	

•  A6 posted Thursday	

§  Over two full weeks	

§  Week and ½ after exam	

10/30/12	
 OO Design	
 2	

•  Prelim, Nov 6th 7:30-9:30	

§  Review posted tonight	

§  Review session Sunday	

§  Recursion + Loops + Classes	

•  Last day for conflicts!!!	

§  Submit conflict on CMS	

§  Extra time: please submit too	

Computer Game Development	

Credits: Planetfall (1983)	

Steve Meretzky	

Credits: Portal (2007)	

10/30/12	
 OO Design	
 3	

Computer Game Development	

Credits: Planetfall (1983)	

Steve Meretzky	

Credits: Portal (2007)	

10/30/12	
 OO Design	
 4	

Challenge: Breaking Up Software	

10/30/12	
 OO Design	
 5	

Challenge: Breaking Up Software	

10/30/12	
 OO Design	
 6	

Function Bodies	

Function Calls	

Function Bodies	

Challenge: Breaking Up Software	

10/30/12	
 OO Design	
 7	

Written by one	

person/group	

By another	

person/group	

MEETINGS!	

Challenge: Breaking Up Software	

10/30/12	
 OO Design	
 8	

Function Bodies	

Function Calls	

Function Bodies	

Coordinating
groups must
agree on what
the headers of	

the functions	

look like.	

Encapsulation: Reducing Dependencies	

•  Development is iterative	

§  You are always making changes ���

(to improve your software)	

•  Coordination hurts iteration	

§  Others are calling your functions	

§  If you change how functions work,���

their code may no longer work	

§  Example: Our test code in A1	

•  Encapsulation: limit what the other
programmers can access in your code	

§  If cannot access, changes are okay 	

10/30/12	
 OO Design	
 9	

 Person 1	

 Person 2	

Easy to	

change	

Hard to	

change	

hidden	

exposed	

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Applies to both code and data!	

§  Turtles have a lot of data ���

that you never, ever saw	

§  Did you need to see it	

§  Would it have been a good

idea if you could have seen it?	

•  Encapsulation in Python	

§  Make all data hidden	

§  Force data access through ���

the properties (getters/setters)	

§  Or through the methods ���

(see Assignment 6)	

10/30/12	
 OO Design	

	

	

	

	

	

	

45718945	

fahrenheit
Temperature	

__init__(fahrenheit=None,centigrade=None)

10	

centigrade

32.0

0.0

__repr__() __str__()

__eq__(other)

Invariants	

fahrenheit=9*centigrade/5.0+32
centigrade=5*(farenheit-32)/9.0

10	

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Applies to both code and data!	

§  Turtles have a lot of data ���

that you never, ever saw	

§  Did you need to see it	

§  Would it have been a good

idea if you could have seen it?	

•  Encapsulation in Python	

§  Make all data hidden	

§  Force data access through ���

the properties (getters/setters)	

§  Or through the methods ���

(see Assignment 6)	

class Temperature(object):
 _fahrenheit = 32.0
 _centigrade = 0.0

 @property
 def fahrenheit(self):
 """Temp value in fahrenheit"""
 return self._farenheit

 @fahrenheit.setter
 def fahrenheit(self,value):
 self._fahrenheit = float(value)
 # Enforce the invariant
 self._centigrade =5*(value-32)/9.0

10/30/12	
 OO Design	

11	

11	

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Applies to both code and data!	

§  Turtles have a lot of data ���

that you never, ever saw	

§  Did you need to see it	

§  Would it have been a good

idea if you could have seen it?	

•  Encapsulation in Python	

§  Make all data hidden	

§  Force data access through ���

the properties (getters/setters)	

§  Or through the methods ���

(see Assignment 6)	

class Temperature(object):
 _fahrenheit = 32.0
 # _centigrade = 0.0 NOT NEEDED!

 @property
 def centigrade(self):
 """Temp value in centigrade"""
 return 5*(self._fahrenheit-32)/9.0

 @centigrade.setter
 def centigrade(self,value):
 # Change fahrenheit instead
 self. _fahrenheit=9*value/5.0+32

10/30/12	
 OO Design	

12	

12	

Interface vs. Implementation	

Interface	

•  Unhidden methods/properties	

•  Specifications of the above	

 @property
 def centigrade(self):
 """Temp value in centigrade"""
 return 5*(self._fahrenheit-32)/9.0	

	

Difficult to change!	

Implementation	

•  Hidden fields and methods	

•  Bodies of methods/properties	

 @property
 def centigrade(self):
 """Temp value in centigrade"""
 return 5*(self._fahrenheit-32)/9.0

Easy to change	

	

	

10/30/12	
 OO Design	
 13	

The Challenge of Making Software	

def vignette(self):
 """Simulate antique lenses.

 Antique lenses had vignetting or corner
 darkening. This method darkens each pixel
 in the image by the factor
 (d / hfD)^2
 where d is the distance from the pixel to
 the center of the image and hfD (for half
 diagonal) is the distance from the center of
 the image to the corners.""”
 rows = self.current.rows
 cols = self.current.cols
 # FINISH ME

•  We do a lot for you	

§  Classes made ahead of time	

§  Detailed specifications	

§  You just “fill in blanks”	

•  The “Real World”	

§  Vague specifications	

§  Unknown # of classes	

§  Everything from scratch	

•  Where do you start?	

10/30/12	
 14	
OO Design	

•  Pattern: reusable solution to a common problem	

§  Template, not a single program	

§  Tells you how to design your code	

§ Made by someone who ran into problem first	

•  In many cases, a pattern gives you the interface	

§  List of headers for non-hidden methods	

§  Specification for non-hidden methods	

§ Only thing missing is the implementation	

Software Patterns	

Just like	

this course!	

10/30/12	
 15	
OO Design	

Model	

• 	
Defines and
	
manages the data	

• 	
Responds to the
	
controller requests	

View	

• 	
Displays model to
	
the user	

• 	
Provides interface
	
for the controller	

Controller	

• 	
Updates model in
	
response to events	

• 	
Updates view with
	
model changes	
	

Model-View-Controller Pattern	

Calls the
methods or	

Functions of	

10/30/12	
 16	
OO Design	

Division
can apply
to classes

or modules	

•  Model: (Temperature in model.py)	

§  Stores one value: fahrenheit	

§  But the methods present two values	

•  View: (TemperaturePanel in view.py)	

§  Constructor creates GUI components	

§  Recieves user input but does not “do anything”	

•  Controller: (ConverterApp in controller.py)	

§ Main class: instantiates all of the objects	

§  “Communicates” between model and view	

TemperatureConverter Example	

10/30/12	
 17	
OO Design	

View	

Model	

ControllerApp	
Controller	

TemperatureConverter Example	

10/30/12	
 18	
OO Design	

	

	

	

	

	

	

45718945	

fahrenheit
Temperature	

…

centigrade

32.0

0.0

Advantages of This Approach	

View	
 Another View	

10/30/12	
 19	
OO Design	

MVC and Assignment 6	

Main	

ImageProcessor	

ImageArray	

ImagePanel	

View	

Controller	

Model	

10/30/12	
 20	
OO Design	

ImagerApp	

imager.kv

Beyond Model-View-Controller	

•  MVC is best for offline programs	

§ Networked get more complex	

•  Client-Server	

§  Client runs on your computer	

§  Client connects to remoter server	

•  Three-Tier Applications	

§  Client-Server-Database	

§  Standard for web applications	

•  … and many others	

Client(s)	

Server(s)	

Database(s)	

10/30/12	
 21	
OO Design	

You Can Even Mix and Match	

Client	
 Server	

Controller	

Model	
 View	

Controller	

Model	

10/30/12	
 22	
OO Design	

Software Patterns and Computer Science	

•  Patterns are part of Software Engineering	

§ At Cornell that is part of the CS department	

§  But also part of information science	

•  Very important in the “Systems” courses	

§  Courses focused on building big applications	

§  Examples: databases, operating systems, etc…	

§  Interested in systems? Take 2110, then 3410	

•  Also a big part of the game design courses	

§  Recently renumbered as CS 3152 	

10/30/12	
 23	
OO Design	

Software	

Engineering	

