
10/28/12	

1	

Computer Game Development	

Credits: Planetfall (1983)	

Steve Meretzky	

Credits: Portal (2007)	

Challenge: Breaking Up Software	

Function Bodies	

Function Calls	

Function Bodies	

Encapsulation: Reducing Dependencies	

•  Development is iterative	

§  You are always making changes ���

(to improve your software)	

•  Coordination hurts iteration	

§  Others are calling your functions	

§  If you change how functions work,���

their code may no longer work	

§  Example: Our test code in A1	

•  Encapsulation: limit what the other
programmers can access in your code	

§  If cannot access, changes are okay 	

 Person 1	

 Person 2	

Easy to	

change	

Hard to	

change	

hidden	

exposed	

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Applies to both code and data!	

§  Turtles have a lot of data ���

that you never, ever saw	

§  Did you need to see it	

§  Would it have been a good

idea if you could have seen it?	

•  Encapsulation in Python	

§  Make all data private	

§  Force data access through ���

the properties (getters/setters)	

§  Or through the methods ���

(see Assignment 6)	

	

	

	

	

	

	

45718945	

fahrenheit
Temperature	

__init__(fahrenheit=None,centigrade=None)

4	

centigrade

32.0

0.0

__repr__()
 __str__()

__eq__(other)

Invariants	

fahrenheit=9*centigrade/5.0+32

centigrade=5*(farenheit-32)/9.0

Encapsulation is the Primary Purpose ���
of Object Oriented Programming	

•  Applies to both code and data!	

§  Turtles have a lot of data ���

that you never, ever saw	

§  Did you need to see it	

§  Would it have been a good

idea if you could have seen it?	

•  Encapsulation in Python	

§  Make all data private	

§  Force data access through ���

the properties (getters/setters)	

§  Or through the methods ���

(see Assignment 6)	

class Temperature(object):

 _fahrenheit = 32.0

 # _centigrade = 0.0 NOT NEEDED!

 @property

 def centigrade(self):

 """Temp value in centigrade"""

 return 5*(self._fahrenheit-32)/9.0

 @centigrade.setter

 def centigrade(self,value):

 # Change fahrenheit instead

 self. _fahrenheit=9*value/5.0+32

5	

Interface vs. Implementation	

Interface	

•  Unhidden methods/properties	

•  Specifications of the above	

 @property

 def centigrade(self):

 """Temp value in centigrade"""

 return 5*(self._fahrenheit-32)/9.0	

	

Difficult to change!	

Implementation	

•  Hidden fields and methods	

•  Bodies of methods/properties	

 @property

 def centigrade(self):

 """Temp value in centigrade"""

 return 5*(self._fahrenheit-32)/9.0

Easy to change	

	

	

10/28/12	

2	

The Challenge of Making Software	

def vignette(self):

 """Simulate antique lenses.

 Antique lenses had vignetting or corner

 darkening. This method darkens each pixel

 in the image by the factor

 (d / hfD)^2

 where d is the distance from the pixel to

 the center of the image and hfD (for half

 diagonal) is the distance from the center of

 the image to the corners.""”

 rows = self.current.rows

 cols = self.current.cols

 # FINISH ME

•  We do a lot for you	

§  Classes made ahead of time	

§  Detailed specifications	

§  You just “fill in blanks”	

•  The “Real World”	

§  Vague specifications	

§  Unknown # of classes	

§  Everything from scratch	

•  Where do you start?	

•  Pattern: reusable solution to a common problem	

§  Template, not a single program	

§  Tells you how to design your code	

§ Made by someone who ran into problem first	

•  In many cases, a pattern gives you the interface	

§  List of headers for the public methods	

§  Specification for these public methods	

§ Only thing missing is the implementation	

Software Patterns	

Just like	

this course!	

Model	

• 	

Defines and
	

manages the data	

• 	

Responds to the
	

controller requests	

View	

• 	

Displays model to
	

the player	

• 	

Provides interface
	

for the controller	

Controller	

• 	

Updates model in
	

response to events	

• 	

Updates view with
	

model changes	

	

Model-View-Controller Pattern	

Calls the
methods or	

Functions of	

Division
can apply
to classes

or modules	

•  Model: (Temperature in model.py)	

§  Stores one value: fahrenheit	

§  But the methods present two values	

•  View: (TemperaturePanel in view.py)	

§  Constructor creates GUI components	

§  Recieves user input but does not “do anything”	

•  Controller: (ConverterApp in controller.py)	

§ Main class: instantiates all of the objects	

§  “Communicates” between model and view	

TemperatureConverter Example	

View	

Model	

ControllerApp	

Controller	

TemperatureConverter Example	

	

	

	

	

	

	

45718945	

fahrenheit
Temperature	

…

centigrade

32.0

0.0

MVC and Assignment 6	

Main	

ImageProcessor	

ImageArray	

ImagePanel	

View	

Controller	

Model	

ImagerApp	

imager.kv

