
Classes and Types	


Lecture 18 	
	




Announcements for Today	


Reading	

•  Today: See reading online	

•  Tuesday: See reading online	


Assignments	

•  A4 is being graded	


§  Will take at least a week	

§  Fill out the surveys!	

§  Surveys are individual	


•  A5 has been posted	

§  Due next Wednesday	

§  Remember to upgrade ���

your CornellExtensions	

§  No weekend consultants	

§  But extra help Mon, Tue	
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•  Prelim, Nov 6th 7:30-9:30	

§  Material up to next class	

§  Review posted next week	

§  Recursion + Loops + Classes	


•  Conflict with Prelim time?	

§  Submit to Prelim 2 Conflict 

assignment on CMS	

§  Do not submit if no conflict	




Recall: Overloading Multiplication	

class Fraction(object):
    numerator = 0     # int
    denominator = 1  # int > 0
    …


    def __mul__(self,q):
        """Returns: Product of self, q
        Makes a new Fraction; does not   
        modify contents of self or q
        Precondition: q a Fraction"""
        assert type(q) == Fraction
        top = self.numerator*q.numerator
        bot = self.denominator*q.denominator
        return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q



>>> r = p.__mul__(q)

Python ���
converts to	


Operator overloading uses 
method in object on left.	
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Recall: Overloading Multiplication	

class Fraction(object):
    numerator = 0     # int
    denominator = 1  # int > 0
    …


    def __mul__(self,q):
        """Returns: Product of self, q
        Makes a new Fraction; does not   
        modify contents of self or q
        Precondition: q a Fraction"""
        assert type(q) == Fraction
        top = self.numerator*q.numerator
        bot = self.denominator*q.denominator
        return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q



>>> r = p.__mul__(q) # ERROR


Python ���
converts to	


Can only multiply fractions.	

But ints “make sense” too.	
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Dispatch on Type	


•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	


•  Addition for numbers	

•  Concatenation for strings	


•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	


•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	


class Fraction(object):
    …
    def __mul__(self,q):
        """Returns: Product of self, q
        Precondition: q a Fraction or int"""
        if type(q) == Fraction:
            return self._mulFrac(q)
        elif type(q) == int:
            return self._mulInt(q)
     …
    def _mulInt(self,q): # Hidden method
        return Fraction(self.numerator*q,
                                 self.denominator)	


10/25/12	
 Classes and Types	
 5	




Dispatch on Type	


•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	


•  Addition for numbers	

•  Concatenation for strings	


•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	


•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	


class Fraction(object):
    …
    def __mul__(self,q):
        """Returns: Product of self, q
        Precondition: q a Fraction or int"""
        if type(q) == Fraction:
            return self._mulFrac(q)
        elif type(q) == int:
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     …
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Classes are main way to handle 
“dispatch on type” in Python.	

Other languages have other 

ways to support this (e.g. Java)	




Dispatch on Type	


•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	


•  Addition for numbers	

•  Concatenation for strings	


•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	


•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	


class Fraction(object):
    …
    def __mul__(self,q):
        """Returns: Product of self, q
        Precondition: q a Fraction or int"""
        if type(q) == Fraction:
            return self._mulFrac(q)
        elif type(q) == int:
            return self._mulInt(q)
     …
    def _mulInt(self,q): # Hidden method
        return Fraction(self.numerator*q,
                                 self.denominator)	
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Useful in Assignment 5.	


Helpers are not required.	




Classes and Types: A Problem	

class Employee(object):
    """An Employee with a salary"""
    …
    def __eq__(self,other):
        if (not type(other) == Employee):
            return False
        return (self.name == other.name and 
                    self.start == other.start and 
                    self.salary == other.salary)
 
class Executive(Employee):
    """An Employee with a bonus."""
    …

>>> # Promote Bob to executive
>>> e = Employee('Bob',2011)
>>> f = Executive('Bob',2011)
>>> e == f
False
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Exactly the same contents.	

Only difference is the type.	

Do we want it like this?	




The isinstance Function	


•  isinstance(<obj>,<class>)
§  True if <obj> has a <class> 

partition in its folder	

§  False otherwise	


•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance
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5298179176	


Executive	


	

	

	

	

	

	


… 

Employee	


salary 0.0start 2012

name 'Fred'

__init__(…) __str__()

bonus 0.0

… 
__init__(…) __str__()



The isinstance Function	


•  isinstance(<obj>,<class>)
§  True if <obj> has a <class> 

partition in its folder	

§  False otherwise	


•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance

class Employee(object):
    …
    def __eq__(self,other):
        if (not isinstance(other,Employee)):
            return False
        return (self.name == other.name and 
                    self.start == other.start and 
                    self.salary == other.salary)
 

class Executive(Employee):
    …
    def __eq__(self,other):
        result = super(Executive,self).__eq__(other)
        if (isinstance(other,Executive)):
            return result and self.bonus = other.bonus
        return result
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The isinstance Function	


•  isinstance(<obj>,<class>)
§  True if <obj> has a <class> 

partition in its folder	

§  False otherwise	


•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance

class Employee(object):
    …
    def __eq__(self,other):
        if (not isinstance(other,Employee)):
            return False
        return (self.name == other.name and 
                    self.start == other.start and 
                    self.salary == other.salary)
 

class Executive(Employee):
    …
    def __eq__(self,other):
        result = super(Executive,self).__eq__(other)
        if (isinstance(other,Executive)):
            return result and self.bonus = other.bonus
        return result
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isinstance and Subclasses	


>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???
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A: True	

B: False	

C: Error	

D: I don’t know	


4298768184	


	

	

	

	

	

	


… 

Employee	


salary 50kstart 2011

name 'Bob'

__init__(…) __str__()



isinstance and Subclasses	


>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???
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A: True	

B: False	

C: Error	

D: I don’t know	


object

Executive

Employee

→ means “extends”  
or “is an instance of” 

Correct	




Error Types in Python	


def foo():
   assert 1 == 2, 'My error'
   …

>>> foo()
AssertionError: My error

def foo():
    x = 5 / 0
   …

>>> foo()
ZeroDivisionError: integer 
division or modulo by zero
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Class Names	




Error Types in Python	


def foo():
   assert 1 == 2, 'My error'
   …

>>> foo()
AssertionError: My error

def foo():
    x = 5 / 0
   …

>>> foo()
ZeroDivisionError: integer 
division or modulo by zero
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Class Names	


Information about an error 
is stored inside an object.	

The error type is the class	

of the error object.	




Error Types in Python	


BaseException

StandardError

AssertionError

Exception

•  All errors are instances of class BaseException	

•  This allows us to organize them in a hierarchy	


	

	

	

	

	

	


456789	

	

	

	

	

	

	


Exception	


__init__(msg='')
…

BaseException	

'My error' 

__str__()

StandardError	


AssertionError	


16	


→ means “extends”  
or “is an instance of” 
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Python Error Type Hierarchy	
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Exception	


StandardError	
SystemExit	


AssertionError	
 ArithmeticError	
AttributeError	
 ValueError	
TypeError	
IOError	
 …	


ZeroDivisionError	
 OverflowError	
 …	


Argument has 
wrong type	


(e.g. float([1]))	


Argument has 
wrong value	


(e.g. float('a'))	


Why so many error types?	
http://docs.python.org/�
library/exceptions.html



Recall: Recovering from Errors	


•  try-except blocks allow us to recover from errors	

§  Do the code that is in the try-block	

§  Once an error occurs, jump to the catch	


•  Example:	

try:

input = raw_input() # get number from user
x = float(input)        # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have an error	


executes if have an error	
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Errors and Dispatch on Type	


•  try-except blocks can be restricted to specific errors	

§  Doe except if error is an instance of that type	

§  If error not an instance, do not recover	


•  Example:	

try:

input = raw_input() # get number from user
x = float(input)        # convert string to float
print 'The next number is '+str(x+1)

except ValueError:
print 'Hey! That is not a number!'

Only recovers ValueError.	

Other errors ignored.	
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May have ValueError	


May have IOError	




Errors and Dispatch on Type	


•  try-except blocks can be restricted to specific errors	

§  Doe except if error is an instance of that type	

§  If error not an instance, do not recover	


•  Example:	

try:

input = raw_input() # get number from user
x = float(input)        # convert string to float
print 'The next number is '+str(x+1)

except IOError:
print 'Check your keyboard!'

Only recovers IOError.	

Other errors ignored.	
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May have ValueError	


May have IOError	




Creating Errors in Python	


def foo(x):
   assert x < 2, 'My error'
   …

def foo(x):
   if x >= 2:
       m = 'My error'
       raise AssertionError(m)
   …
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•  Create errors with raise
§  Usage: raise <exp>
§  exp evaluates to an object	

§  An instance of Exception	


•  Tailor your error types	

§  ValueError: Bad value	

§  TypeError: Bad type	


•  Still prefer asserts for 
preconditions, however	

§  Compact and easy to read	


Identical	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except StandardError:
       x = 3
    return x

•  The value of foo()? 	
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A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except StandardError:
       x = 3
    return x

•  The value of foo()? 	
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A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	


Correct	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except Exception:
       x = 3
    return x

•  The value of foo()? 	
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A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except Exception:
       x = 3
    return x

•  The value of foo()? 	
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A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	


Correct	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except AssertionError:
       x = 3
    return x

•  The value of foo()? 	


10/25/12	
 Classes and Types	
 26	


A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	




Raising and Try-Except	


def foo():
    x = 0
    try:
       raise StandardError()
       x  = 2
    except AssertionError:
       x = 3
    return x

•  The value of foo()? 	
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A: 0	

B: 2	

C: 3	

D: No value.  It stops!	

E: I don’t know	


Python uses isinstance
to match Error types	


Correct	




Creating Your Own Exceptions	

class CustomError(StandardError):
    """An instance is a custom exception"""
     pass

This is all you need	

§  No extra fields	

§  No extra methods	

§  No constructors	

Inherit everything	
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Only issues is choice of 
parent Exception class.	

Use StandardError if 
you are unsure what.	




Errors and Dispatch on Type	


•  try-except can put the error in a variable	

•  Example:	


try:
input = raw_input() # get number from user
x = float(input)        # convert string to float
print 'The next number is '+str(x+1)

except ValueError as e:
print e.message
print 'Hey! That is not a number!'
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Some Error subclasses 
have more attributes	




Typing Philosophy in Python	


•  Duck Typing:
§  “Type” object is determined 

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	


•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an 

attribute/method of that name	

•  This has many problems	


§  The name tells you nothing 
about its specification	




class Employee(object):
    """An Employee with a salary"”"
    …
    def __eq__(self,other):
        if (not (hasattr(other,'name') and
                    hasattr(other,'start') and
                    hasattr(other,'salary'))
            return False
        return (self.name == other.name and 
                    self.start == other.start and 
                    self.salary == other.salary)
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Typing Philosophy in Python	


•  Duck Typing:
§  “Type” object is determined 

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	


•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an 

attribute/method of that name	

•  This has many problems	
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class Employee(object):
    """An Employee with a salary"”"
    …
    def __eq__(self,other):
        if (not (hasattr(other,'name') and
                    hasattr(other,'start') and
                    hasattr(other,'salary'))
            return False
        return (self.name == other.name and 
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Compares anything with ���
a name, start, & salary.	




Typing Philosophy in Python	


•  Duck Typing:
§  “Type” object is determined 

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	


•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an 

attribute/method of that name	

•  This has many problems	


§  The name tells you nothing 
about its specification	




class Employee(object):
    """An Employee with a salary"”"
    …
    def __eq__(self,other):
        if (not (hasattr(other,'name') and
                    hasattr(other,'start') and
                    hasattr(other,'salary'))
            return False
        return (self.name == other.name and 
                    self.start == other.start and 
                    self.salary == other.salary)
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How to properly implement/use typing 
is a major debate in language design	

 	


•  What we really care about is 
specifications (and invariants)	


•  Types are a “shorthand” for this	

Different typing styles trade ease-of-use 
with overall program robustness/safety	

	



