
Classes and Types	

Lecture 18 	
	

Announcements for Today	

Reading	

•  Today: See reading online	

•  Tuesday: See reading online	

Assignments	

•  A4 is being graded	

§  Will take at least a week	

§  Fill out the surveys!	

§  Surveys are individual	

•  A5 has been posted	

§  Due next Wednesday	

§  Remember to upgrade ���

your CornellExtensions	

§  No weekend consultants	

§  But extra help Mon, Tue	

10/25/12	
 Classes and Types	
 2	

•  Prelim, Nov 6th 7:30-9:30	

§  Material up to next class	

§  Review posted next week	

§  Recursion + Loops + Classes	

•  Conflict with Prelim time?	

§  Submit to Prelim 2 Conflict

assignment on CMS	

§  Do not submit if no conflict	

Recall: Overloading Multiplication	

class Fraction(object):
 numerator = 0 # int
 denominator = 1 # int > 0
 …

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 top = self.numerator*q.numerator
 bot = self.denominator*q.denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python ���
converts to	

Operator overloading uses
method in object on left.	

10/25/12	
 Classes and Types	
 3	

Recall: Overloading Multiplication	

class Fraction(object):
 numerator = 0 # int
 denominator = 1 # int > 0
 …

 def __mul__(self,q):
 """Returns: Product of self, q
 Makes a new Fraction; does not
 modify contents of self or q
 Precondition: q a Fraction"""
 assert type(q) == Fraction
 top = self.numerator*q.numerator
 bot = self.denominator*q.denominator
 return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python ���
converts to	

Can only multiply fractions.	

But ints “make sense” too.	

10/25/12	
 Classes and Types	
 4	

Dispatch on Type	

•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	

•  Addition for numbers	

•  Concatenation for strings	

•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	

•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	

class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self.numerator*q,
 self.denominator)	

10/25/12	
 Classes and Types	
 5	

Dispatch on Type	

•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	

•  Addition for numbers	

•  Concatenation for strings	

•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	

•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	

class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self.numerator*q,
 self.denominator)	

10/25/12	
 Classes and Types	
 6	

Classes are main way to handle
“dispatch on type” in Python.	

Other languages have other

ways to support this (e.g. Java)	

Dispatch on Type	

•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	

•  Addition for numbers	

•  Concatenation for strings	

•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	

•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	

class Fraction(object):
 …
 def __mul__(self,q):
 """Returns: Product of self, q
 Precondition: q a Fraction or int"""
 if type(q) == Fraction:
 return self._mulFrac(q)
 elif type(q) == int:
 return self._mulInt(q)
 …
 def _mulInt(self,q): # Hidden method
 return Fraction(self.numerator*q,
 self.denominator)	

10/25/12	
 Classes and Types	
 7	

Useful in Assignment 5.	

Helpers are not required.	

Classes and Types: A Problem	

class Employee(object):
 """An Employee with a salary"""
 …
 def __eq__(self,other):
 if (not type(other) == Employee):
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

class Executive(Employee):
 """An Employee with a bonus."""
 …

>>> # Promote Bob to executive
>>> e = Employee('Bob',2011)
>>> f = Executive('Bob',2011)
>>> e == f
False
	

10/25/12	
 Classes and Types	
 8	

Exactly the same contents.	

Only difference is the type.	

Do we want it like this?	

The isinstance Function	

•  isinstance(<obj>,<class>)
§  True if <obj> has a <class>

partition in its folder	

§  False otherwise	

•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance

10/25/12	
 Classes and Types	
 9	

	

	

	

	

	

	

5298179176	

Executive	

	

	

	

	

	

	

…

Employee	

salary 0.0start 2012

name 'Fred'

__init__(…) __str__()

bonus 0.0

…
__init__(…) __str__()

The isinstance Function	

•  isinstance(<obj>,<class>)
§  True if <obj> has a <class>

partition in its folder	

§  False otherwise	

•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance

class Employee(object):
 …
 def __eq__(self,other):
 if (not isinstance(other,Employee)):
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

class Executive(Employee):
 …
 def __eq__(self,other):
 result = super(Executive,self).__eq__(other)
 if (isinstance(other,Executive)):
 return result and self.bonus = other.bonus
 return result

10/25/12	
 Classes and Types	
 10	

The isinstance Function	

•  isinstance(<obj>,<class>)
§  True if <obj> has a <class>

partition in its folder	

§  False otherwise	

•  Example:	

§  isinstance(e,Executive) is True
§  isinstance(e,Employee) is True
§  isinstance(e,object) is True
§  isinstance(e,str) is False

•  Generally preferable to type
§  Plays better with super
§  If not sure, use isinstance

class Employee(object):
 …
 def __eq__(self,other):
 if (not isinstance(other,Employee)):
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

class Executive(Employee):
 …
 def __eq__(self,other):
 result = super(Executive,self).__eq__(other)
 if (isinstance(other,Executive)):
 return result and self.bonus = other.bonus
 return result

10/25/12	
 Classes and Types	
 11	

isinstance and Subclasses	

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

10/25/12	
 Classes and Types	
 12	

A: True	

B: False	

C: Error	

D: I don’t know	

4298768184	

	

	

	

	

	

	

…

Employee	

salary 50kstart 2011

name 'Bob'

__init__(…) __str__()

isinstance and Subclasses	

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

10/25/12	
 Classes and Types	
 13	

A: True	

B: False	

C: Error	

D: I don’t know	

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct	

Error Types in Python	

def foo():
 assert 1 == 2, 'My error'
 …

>>> foo()
AssertionError: My error

def foo():
 x = 5 / 0
 …

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

10/25/12	
 Classes and Types	
 14	

Class Names	

Error Types in Python	

def foo():
 assert 1 == 2, 'My error'
 …

>>> foo()
AssertionError: My error

def foo():
 x = 5 / 0
 …

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

10/25/12	
 Classes and Types	
 15	

Class Names	

Information about an error
is stored inside an object.	

The error type is the class	

of the error object.	

Error Types in Python	

BaseException

StandardError

AssertionError

Exception

•  All errors are instances of class BaseException	

•  This allows us to organize them in a hierarchy	

	

	

	

	

	

	

456789	

	

	

	

	

	

	

Exception	

__init__(msg='')
…

BaseException	

'My error'

__str__()

StandardError	

AssertionError	

16	

→ means “extends”
or “is an instance of”

10/25/12	
 Classes and Types	

Python Error Type Hierarchy	

10/25/12	
 Classes and Types	
 17	

Exception	

StandardError	
SystemExit	

AssertionError	
 ArithmeticError	
AttributeError	
 ValueError	
TypeError	
IOError	
 …	

ZeroDivisionError	
 OverflowError	
 …	

Argument has
wrong type	

(e.g. float([1]))	

Argument has
wrong value	

(e.g. float('a'))	

Why so many error types?	
http://docs.python.org/�
library/exceptions.html

Recall: Recovering from Errors	

•  try-except blocks allow us to recover from errors	

§  Do the code that is in the try-block	

§  Once an error occurs, jump to the catch	

•  Example:	

try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have an error	

executes if have an error	

10/25/12	
 18	
Classes and Types	

Errors and Dispatch on Type	

•  try-except blocks can be restricted to specific errors	

§  Doe except if error is an instance of that type	

§  If error not an instance, do not recover	

•  Example:	

try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except ValueError:
print 'Hey! That is not a number!'

Only recovers ValueError.	

Other errors ignored.	

10/25/12	
 19	
Classes and Types	

May have ValueError	

May have IOError	

Errors and Dispatch on Type	

•  try-except blocks can be restricted to specific errors	

§  Doe except if error is an instance of that type	

§  If error not an instance, do not recover	

•  Example:	

try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except IOError:
print 'Check your keyboard!'

Only recovers IOError.	

Other errors ignored.	

10/25/12	
 20	
Classes and Types	

May have ValueError	

May have IOError	

Creating Errors in Python	

def foo(x):
 assert x < 2, 'My error'
 …

def foo(x):
 if x >= 2:
 m = 'My error'
 raise AssertionError(m)
 …
	

10/25/12	
 Classes and Types	
 21	

•  Create errors with raise
§  Usage: raise <exp>
§  exp evaluates to an object	

§  An instance of Exception	

•  Tailor your error types	

§  ValueError: Bad value	

§  TypeError: Bad type	

•  Still prefer asserts for
preconditions, however	

§  Compact and easy to read	

Identical	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except StandardError:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 22	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except StandardError:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 23	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Correct	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except Exception:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 24	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except Exception:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 25	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Correct	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except AssertionError:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 26	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Raising and Try-Except	

def foo():
 x = 0
 try:
 raise StandardError()
 x = 2
 except AssertionError:
 x = 3
 return x

•  The value of foo()? 	

10/25/12	
 Classes and Types	
 27	

A: 0	

B: 2	

C: 3	

D: No value. It stops!	

E: I don’t know	

Python uses isinstance
to match Error types	

Correct	

Creating Your Own Exceptions	

class CustomError(StandardError):
 """An instance is a custom exception"""
 pass

This is all you need	

§  No extra fields	

§  No extra methods	

§  No constructors	

Inherit everything	

10/25/12	
 28	
Classes and Types	

Only issues is choice of
parent Exception class.	

Use StandardError if
you are unsure what.	

Errors and Dispatch on Type	

•  try-except can put the error in a variable	

•  Example:	

try:
input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except ValueError as e:
print e.message
print 'Hey! That is not a number!'

10/25/12	
 29	
Classes and Types	

Some Error subclasses
have more attributes	

Typing Philosophy in Python	

•  Duck Typing:
§  “Type” object is determined

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	

•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an

attribute/method of that name	

•  This has many problems	

§  The name tells you nothing
about its specification	

class Employee(object):
 """An Employee with a salary"”"
 …
 def __eq__(self,other):
 if (not (hasattr(other,'name') and
 hasattr(other,'start') and
 hasattr(other,'salary'))
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

10/25/12	
 Classes and Types	
 30	

Typing Philosophy in Python	

•  Duck Typing:
§  “Type” object is determined

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	

•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an

attribute/method of that name	

•  This has many problems	

§  The name tells you nothing
about its specification	

class Employee(object):
 """An Employee with a salary"”"
 …
 def __eq__(self,other):
 if (not (hasattr(other,'name') and
 hasattr(other,'start') and
 hasattr(other,'salary'))
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

10/25/12	
 Classes and Types	
 31	

Compares anything with ���
a name, start, & salary.	

Typing Philosophy in Python	

•  Duck Typing:
§  “Type” object is determined

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	

•  Implement with hasattr()
§  hasattr(<object>,<string>)
§  Returns true if object has an

attribute/method of that name	

•  This has many problems	

§  The name tells you nothing
about its specification	

class Employee(object):
 """An Employee with a salary"”"
 …
 def __eq__(self,other):
 if (not (hasattr(other,'name') and
 hasattr(other,'start') and
 hasattr(other,'salary'))
 return False
 return (self.name == other.name and
 self.start == other.start and
 self.salary == other.salary)

10/25/12	
 Classes and Types	
 32	

How to properly implement/use typing
is a major debate in language design	

 	

•  What we really care about is
specifications (and invariants)	

•  Types are a “shorthand” for this	

Different typing styles trade ease-of-use
with overall program robustness/safety	

	

