
10/25/12	

1	

Recall: Overloading Multiplication	

class Fraction(object):

 numerator = 0 # int

 denominator = 1 # int > 0

 …

 def __mul__(self,q):

 """Returns: Product of self, q

 Makes a new Fraction; does not

 modify contents of self or q

 Precondition: q a Fraction"""

 assert type(q) == Fraction

 top = self.numerator*q.numerator

 bot = self.denominator*q.denominator

 return Fraction(top,bot)

>>> p = Fraction(1,2)

>>> q = 2 # an int

>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python ���
converts to	

Can only multiply fractions.	

But ints “make sense” too.	

Dispatch on Type	

•  Types determine behavior	

§  Diff types = diff behavior	

§  Example: + (plus)	

•  Addition for numbers	

•  Concatenation for strings	

•  Can implement with ifs	

§  Main method checks type	

§  “Dispatches” to right helper	

•  How all operators work	

§  Checks (class) type on left	

§  Dispatches to that method	

class Fraction(object):

 …

 def __mul__(self,q):

 """Returns: Product of self, q

 Precondition: q a Fraction or int"""

 if type(q) == Fraction:

 return self._mulFrac(q)

 elif type(q) == int:

 return self._mulInt(q)

 …

 def _mulInt(self,q): # Hidden method

 return Fraction(self.numerator*q,

 self.denominator)	

Classes and Types: A Problem	

class Employee(object):

 """An Employee with a salary"""

 …

 def __eq__(self,other):

 if (not type(other) == Employee):

 return False

 return (self.name == other.name and

 self.start == other.start and

 self.salary == other.salary)

class Executive(Employee):

 """An Employee with a bonus."""

 …

>>> # Promote Bob to executive

>>> e = Employee('Bob',2011)

>>> f = Executive('Bob',2011)

>>> e == f

False

	

Exactly the same contents.	

Only difference is the type.	

Do we want it like this?	

The isinstance Function	

•  isinstance(<obj>,<class>)

§  True if <obj> has a <class>

partition in its folder	

§  False otherwise	

•  Example:	

§  isinstance(e,Executive) is True

§  isinstance(e,Employee) is True

§  isinstance(e,object) is True

§  isinstance(e,str) is False

•  Generally preferable to type

§  Plays better with super

§  If not sure, use isinstance

class Employee(object):

 …

 def __eq__(self,other):

 if (not isinstance(other,Employee)):

 return False

 return (self.name == other.name and

 self.start == other.start and

 self.salary == other.salary)

class Executive(Employee):

 …

 def __eq__(self,other):

 result = super(Executive,self).__eq__(other)

 if (isinstance(other,Executive)):

 return result and self.bonus = other.bonus

 return result

Error Types in Python	

def foo():

 assert 1 == 2, 'My error'

 …

>>> foo()

AssertionError: My error

def foo():

 x = 5 / 0

 …

>>> foo()

ZeroDivisionError: integer
division or modulo by zero

Class Names	

Error Types in Python	

BaseException

StandardError

AssertionError

Exception

•  All errors are instances of class BaseException	

•  This allows us to organize them in a hierarchy	

	

	

	

	

	

	

@105dc	

	

	

	

	

	

	

Exception	

__init__(msg='')

…

BaseException	

'My error'

__str__()

StandardError	

AssertionError	

→ means “extends”
or “is an instance of”

10/25/12	

2	

Python Error Type Hierarchy	

Exception	

StandardError	

SystemExit	

AssertionError	

 ArithmeticError	

AttributeError	

 ValueError	

TypeError	

IOError	

 …	

ZeroDivisionError	

 OverflowError	

 …	

Argument has
wrong type	

(e.g. float([1]))	

Argument has
wrong value	

(e.g. float('a'))	

Why so many error types?	

http://docs.python.org/�
library/exceptions.html

Errors and Dispatch on Type	

•  try-except blocks can be restricted to specific errors	

§  Doe except if error is an instance of that type	

§  If error not an instance, do not recover	

•  Example:	

try:

input = raw_input() # get number from user

x = float(input) # convert string to float

print 'The next number is '+str(x+1)

except ValueError:

print 'Hey! That is not a number!'

Only recovers ValueError.	

Other errors ignored.	

May have ValueError	

May have IOError	

Creating Errors in Python	

def foo(x):

 assert x < 2, 'My error'

 …

def foo(x):

 if x >= 2:

 m = 'My error'

 raise AssertionError(m)

 …

	

•  Create errors with raise

§  Usage: raise <exp>

§  exp evaluates to an object	

§  An instance of Exception	

•  Tailor your error types	

§  ValueError: Bad value	

§  TypeError: Bad type	

•  Still prefer asserts for
preconditions, however	

§  Compact and easy to read	

Identical	

Creating Your Own Exceptions	

class CustomError(StandardError)

 """An instance is a custom exception"""

 pass

This is all you need	

§  No extra fields	

§  No extra methods	

§  No constructors	

Inherit everything	

Only issues is choice of
parent Exception class.	

Use StandardError if
you are unsure what.	

Errors and Dispatch on Type	

•  try-except can put the error in a variable	

•  Example:	

try:

input = raw_input() # get number from user

x = float(input) # convert string to float

print 'The next number is '+str(x+1)

except ValueError as e:

print e.message

print 'Hey! That is not a number!'

Some Error subclasses
have more attributes	

Typing Philosophy in Python	

•  Duck Typing:

§  “Type” object is determined

by its methods and properties	

§  Not the same as type() value	

§  Preferred by Python experts	

•  Implement with hasattr()

§  hasattr(<object>,<string>)

§  Returns true if object has an

attribute/method of that name	

•  This has many problems	

§  The name tells you nothing
about its specification	

class Employee(object):

 """An Employee with a salary"”"

 …

 def __eq__(self,other):

 if (not (hasattr(other,'name') and

 hasattr(other,'start') and

 hasattr(other,'salary'))

 return False

 return (self.name == other.name and

 self.start == other.start and

 self.salary == other.salary)

