
For-Loops	


Lecture 14 	
	




Announcements for This Lecture	


Reading	

•  Today: Chapters 10 (all), 11	

•  Tuesday: Chapters 15, 16	

	


Exams delayed until 
Professor White returns	

§  Will get exams back	

§  Will discuss grades	


Assignments	


•  A3 due tonight!	

§  Need everything this time	

§  Graded over weekend	


•  Remember the survey	

§  Surveys are individual!	

§  Each partner must fill out	


•  A4 posted tomorrow	

§  Due week from Tuesday	


10/11/12	
 For Loops	
 2	




Strings, Lists and Sequences	


•  Sequences are potentially unbounded	

§ Number of elements inside them is not fixed	


•  Cannot process with fixed number of lines	

§  Each line of code can handle at most one element	

§ What if # of elements > # of lines of code?	


•  This is why we used recursion to process them	

§  Each function call handles one element	

§  Recursive call handles the remainder of sequence	


•  Is there an easier way?	

10/11/12	
 For Loops	
 3	




For Loops: Processing Sequences	


# Print contents of seq�
x = seq[0]�
print x�
x = seq[1]�
print x�
…�
x = seq[len(seq)-1]�
print x

•  Remember: 	

§  Cannot program …	

§  Reason for recursion	


         The for-loop:	

         for x in seq:�
             print x


•  Key Concepts	

§  loop sequence: seq
§  loop variable: x
§  body: print x
§ Also called repetend	


10/11/12	
 For Loops	
 4	




For Loops: Processing Sequences	


	
The for-loop:	


 for x in seq:�
     print x

���
	


•  loop sequence: seq
•  loop variable: x
•  body: print x

To execute the for-loop:	

1.  Check if there is a “next” 

element of loop sequence	

2.  If not, terminate execution	

3.  Otherwise, put the element 

in the loop variable	

4.  Execute all of the body	

5.  Repeat as long as 1 is true	


seq has 	

more elts	


put next ���
elt in x

True

False
print x

10/11/12	
 For Loops	
 5	




More Complex For-Loops	


•  Combine with a counter	

§  Variable that increments 

each time body executed	

§  Tracks position in seq

•  Example:	

cnt = 0
for x in seq:
   print `x`+' at '+`cnt`
   cnt = cnt + 1 # incr

•  Nest conditionals inside	

§  Body is all indented code	

§  Can put other control 

structures inside the body	


•  Example:	

nints = 0 # num of ints
for x in seq:
    if type(x) == int:
        nints = nints + 1

10/11/12	
 For Loops	
 6	




For Loops Instead of Recursion	


def deblank(s):
    """Returns: s w/o blanks
        Precondition: s a string"""
    if s == '':
        return s
    # s is not empty
    if s[0] in string.whitespace:
        return deblank(s[1:])
    # s not empty, s[0] not blank
    return (s[0] +�

           deblank(s[1..]))
	


def no_blanks(s):
    """Returns: s w/o blanks
    Precondition: s a string"""
    result = ''
    # glue nonblanks onto result 
    for c in s:
        if not c in string.whitespace:
             result = result+c
    
    return result

10/11/12	
 For Loops	
 7	




For Loops: Processing Ranges of Integers	


    total = 0;
# add the squares of ints�
# in range 2..200 to total�
total = total + 2*2�
total = total + 3*3�
…�
total = total + 200*200

•  For each x in the range 
2..200, add x*x to total	


       The for-loop:	


       for x in range(2,201):�
          total = total + x*x


•  The range function:	


§  range(x):���
List of ints 0 to x-1	


§  range(a,b):���
List of ints a to b-1	


10/11/12	
 For Loops	
 8	




Important Concept in CS:���
Doing Things Repeatedly	


1.  Process each item in a sequence	

§  Compute aggregate statistics for a dataset, ���

such as the mean, median, standard deviation, etc.	

§  Send everyone in a Facebook group an appointment time	


2.  Perform n trials or get n samples.	

§  A4: draw a triangle six times to make a hexagon	

§  Run a protein-folding simulation for 106 time steps	


3.  Do something an unknown  
number of times	

§  CUAUV team, vehicle keeps ���

moving until reached its goal 
	
10/11/12	
 For Loops	
 9	




Important Concept in CS:���
Doing Things Repeatedly	


1.  Process each item in a sequence	

§  Compute aggregate statistics for a dataset, ���

such as the mean, median, standard deviation, etc.	

§  Send everyone in a Facebook group an appointment time	


2.  Perform n trials or get n samples.	

§  A4: draw a triangle six times to make a hexagon	

§  Run a protein-folding simulation for 106 time steps	


3.  Do something an unknown  
number of times	

§  CUAUV team, vehicle keeps ���

moving until reached its goal 
	
10/11/12	
 For Loops	
 10	


   for x in sequence:
       process x

   for x in range(n):
       do next thing

Cannot do this yet	

Not possible w/ Python for



Dictionaries (Type dict)	


Description	


•  List of key-value pairs	

§  Keys are unique	

§  Values need not be	


•  Example: net-ids	

§  net-ids are unique (a key)	

§  names need not be (values)	

§  js1 is John Smith (class ’13)	

§  js2 is John Smith (class ’16)	


•  Many other applications	


Python Syntax	


•  Create with format:���
{k1:v1, k2:v2, …}

•  Keys must be non-mutable	

§  ints, floats, bools, strings	

§  Not lists or custom objects	


•  Values can be anything	

•  Example:���

d = {'js1':'John Smith',�
       'js2':'John Smith',�
       'wmw2':'Walker White'}

10/11/12	
 For Loops	
 11	




Using Dictionaries (Type dict)	


•  Access elts. like a list	

§  d['js1'] evaluates to 'John'
§  But cannot slice ranges!	


•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'
§  Can add new keys	

§  d['aa1'] = 'Allen'
§  Can delete keys	

§  del d['wmw2'] �


d = {'js1':'John','js2':'John',�
       'wmw2':'Walker'}
	


10/11/12	
 For Loops	
 12	


	

	

	

	

	

	
'wmw2'

82799054	


'John'	


'John'	


'Walker'	


dict	


'js2'

'js1'

Key-Value order in ���
folder is not important	


  82799054	
d



Using Dictionaries (Type dict)	


•  Access elts. like a list	

§  d['js1'] evaluates to 'John'
§  But cannot slice ranges!	


•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'
§  Can add new keys	

§  d['aa1'] = 'Allen'
§  Can delete keys	

§  del d['wmw2'] �


d = {'js1':'John','js2':'John',�
       'wmw2':'Walker'}
	


10/11/12	
 For Loops	
 13	


	

	

	

	

	

	
'wmw2'

82799054	


'John' 'Jane'	


'John'	


'Walker'	


dict	


'js2'

'js1'

Key-Value order in ���
folder is not important	


✗	


  82799054	
d



Using Dictionaries (Type dict)	


•  Access elts. like a list	

§  d['js1'] evaluates to 'John'
§  But cannot slice ranges!	


•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'
§  Can add new keys	

§  d['aa1'] = 'Allen'
§  Can delete keys	

§  del d['wmw2'] �


d = {'js1':'John','js2':'John',�
       'wmw2':'Walker'}
	


10/11/12	
 For Loops	
 14	


	

	

	

	

	

	
'wmw2'

82799054	


'Jane'	


'John'	


'Walker'	


dict	


'js2'

'js1'

'aa1' 'Allen'	


  82799054	
d



Using Dictionaries (Type dict)	


•  Access elts. like a list	

§  d['js1'] evaluates to 'John'
§  But cannot slice ranges!	


•  Dictionaries are mutable	

§  Can reassign values	

§  d['js1'] = 'Jane'
§  Can add new keys	

§  d['aa1'] = 'Allen'
§  Can delete keys	

§  del d['wmw2'] �


d = {'js1':'John','js2':'John',�
       'wmw2':'Walker'}
	


10/11/12	
 For Loops	
 15	


	

	

	

	

	

	
'wmw2'

82799054	


'Jane'	


'John'	


'Walker'	


dict	


'js2'

'js1'

'aa1' 'Allen'	

✗	
 ✗	


Deleting key deletes both	


  82799054	
d



Dictionaries and For-Loops	


•  Dictionaries != sequences	

§  Cannot slice them	

§  Cannot use in for-loop	


•  But have methods to give 
you related sequences	

§  Seq of keys: d.keys()
§  Seq of values: d.values()
§  Seq of key-value pairs:���

d.items()
•  Use these in for-loops	


§  Example: grades.py
	


for k in d.keys():�
    print k�
    print d[k]�

for v in d.values():�
    print v

for k,v in d.items():�
    print k�
    print v 

10/11/12	
 For Loops	
 16	




“Turtle” Graphics: Assignment A4	


10/11/12	
 For Loops	
 17	


Turn	


Move	
 Change Color	


Draw Line	




A4: Drawing with the Turtle	


10/11/12	
 For Loops	
 18	


0 degrees	

east	


North	

90 degrees	


180 degrees	

west	


270 degrees	


Draw equilateral triangle:	

# drawmode True�
for x in range(3):�
    t.forward(30)   �
    t.left(120)

•  Turtle Attributes	

§  x and y: where “Turtle” is	

§  heading: direction it faces 	

§  color: the Turtle pen color	

§  drawmode: if True, Turtle 

draws whenever it moves	


•  Draw using methods	

§  t.forward(s) moves turtle	


•  Draws if drawmode True	

§  t.left(a), t.right(a) turn	


• a is angle in degrees	



