Example: Reversing a String

10/4/12

Precise Specification:
= Returns: reverse of s

Solving with recursion 3
= Suppose we can reverse
a smaller string 'H"H
(e.g. less one character)
= Can we use that solution Hnnu.
to reverse whole string?
Often easy to understand i

first without Python
= Then sit down and code

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string""
# {sis empty}

ifg=="

| return s

# { s at least one char }
# (reverse of s[1:])+s[0]
return reverse(s[1:1)+s[0]

R S

Hﬂl
e[ [1]e]

1. Precise specification?

2. Base case: correct?

3. Recursive case:
progress to termination?

4. Recursive case: correct?

Example: Palindromes

String with > 2 characters is a palindrome if:
= its first and last characters are equal, and
= the rest of the characters form a palindrome

Example:
have to be the same

N
AMANLELANACANLLEANANY A
has to be a palindrome
Precise Specification:
def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Example: Palindromes

String with = 2 characters is a palindrome if:

= its first and last characters are equal, and

= the rest of the characters form a palindrome

def ispalindrome(s):

Recursive Function:

Recursive
Definition

""Returns: True if s is a palindrome""

if len(s) < &:

| return True

// { s has at least two characters }

return s[0] == s[-1] and ispalindrome(s[1:-1])

Example: More Palindromes

def ispalindrome&(s):

""Returns: True if s is a palindrome
| Case of characters is ignored4|””‘

Example: More Palindromes

if len(s) < &:

| return Trus ’Precise Specification

// { s has at least two characters
return { equals_ignore_case(s[0],s[-1])

and ispalindrome2(s[1:-1]) )

def equals_ignore_case (a, b):

""Returns: True if a and b are same ignoring case""
return a.upper() == b.upper()

def ispalindrome3(s):

"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""

def depunct(s):

ifs=="
| return s

else deblank(s[1:]))

return ispalindrome2(depunct(s))

# use string.letters to isolate letters
return (s[0]+deblank(s[1:]) if s[0] in string.letters

"""Returns: s with non-letters removed""

Use helper functions!

* Often easy to break a
problem into two

* Can use recursion more
than once to solve




How to Break Up a Recursive Function?

How to Break Up a Recursive Solution?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267") = '5,341,267'
Precondition: s represents a non-negative int""

Approach 1 Approach 2

A g A g

commafy commafy
I:l 341,267 5,341 I:l

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267") = '5,341,267"'
Precondition: s represents a non-negative int"""
# No commas if too few digits.

if len(s) < &:

| returns
# Add the comma before last 3 digits -

return commafy(s[:-3]) + ', + s[-3:]

How to Break Up a Recursive Function?

Raising a Number to an Exponent

def exp(b, ¢)
"""Returns: b
Precondition: b a float, ¢ > 0 an int"""

Approach 1 Approach 2
122%6 = 12x (12259 122% = (12129 x

b¢=b x (b*!)

Recursive | | Recursive

b¢ = (bxb)“2 if ¢ even

def exp(b, ¢) ® # of calls
"""Returns: b 0 0
Precondition: b a float, 1 1
¢ >0 anint"” 2 2
#bVis 1 4 3
ifc==0: 8 4
| return 1 16 5
32 6
#c>0 2" n+l
ifc % 2==0:
| return exp(b*b.c/2) 32768 is 215

b327%8 needs only 215 calls!

return b¥*exp(b*b,c/2)

Hilbert’s Space Filling Curve

Hilbert’s Space Filling Curve

on Hilbert(1): ]_I
Hilbert(2):
on
Hilbert(n): Hn-1) H(n-1)
down down
== Tz
iz | 2%

Basic Idea

Given a box

* Draw 2mx2"
grid in box

¢ Trace the curve

* Asn goes to %,
curve fills box




