
10/4/12	

1	

Example: Reversing a String	

•  Precise Specification:	

§  Returns: reverse of s	

•  Solving with recursion	

§  Suppose we can reverse ���

a smaller string���
(e.g. less one character)	

§  Can we use that solution
to reverse whole string?	

•  Often easy to understand
first without Python	

§  Then sit down and code	

H	
 e	
 l	
 l	
 o	
 !	

!	
 o	
 l	
 l	
 e	
 H	

e	
 l	
 l	
 o	
 !	

!	
 o	
 l	
 l	
 e	

H	

Example: Reversing a String	

def reverse(s):
 """Returns: reverse of s

 Precondition: s a string"""
 # {s is empty}
 if s == '':
 return s

 # { s at least one char }
 # (reverse of s[1:])+s[0]
 return reverse(s[1:])+s[0]	

e	
 l	
 l	
 o	
 !	

!	
 o	
 l	
 l	
 e	

H	

1.  Precise specification?	

2.  Base case: correct?	

3.  Recursive case: ���

progress to termination?	

4.  Recursive case: correct?	

✔	

✔	

✔	

✔	

have to be the same	

Example: Palindromes	

•  String with ≥ 2 characters is a palindrome if:	

§  its first and last characters are equal, and	

§  the rest of the characters form a palindrome	

•  Example:	

AMANAPLANACANALPANAMA	

•  Precise Specification:	

 def ispalindrome(s):
 """Returns: True if s is a palindrome"""

has to be a palindrome	

Example: Palindromes	

•  String with ≥ 2 characters is a palindrome if:	

§  its first and last characters are equal, and	

§  the rest of the characters form a palindrome	

•  Recursive Function:	

def ispalindrome(s):�
 """Returns: True if s is a palindrome"""�
 if len(s) < 2:�
 return True

 // { s has at least two characters }
 return s[0] == s[–1] and ispalindrome(s[1:-1])

Recursive case	

Base case	

Recursive
Definition

Example: More Palindromes	

Precise Specification	

def ispalindrome2(s):
 """Returns: True if s is a palindrome
 Case of characters is ignored."""
 if len(s) < 2:
 return True�

 // { s has at least two characters }
 return (equals_ignore_case(s[0],s[–1])
 and ispalindrome2(s[1:-1]))

def equals_ignore_case (a, b):
 """Returns: True if a and b are same ignoring case"""
 return a.upper() == b.upper()

Example: More Palindromes	

 def ispalindrome3(s):
 """Returns: True if s is a palindrome
 Case of characters and non-letters ignored."""
 return ispalindrome2(depunct(s))

 def depunct(s):
 """Returns: s with non-letters removed"""
 if s == '':
 return s
 # use string.letters to isolate letters
 return (s[0]+deblank(s[1:]) if s[0] in string.letters�

 else deblank(s[1:]))

Use helper functions!	

•  Often easy to break a

problem into two	

•  Can use recursion more

than once to solve	

10/4/12	

2	

How to Break Up a Recursive Function?	

def commafy(s):
 """Returns: string with commas every 3 digits�
 e.g. commafy('5341267') = '5,341,267'�
 Precondition: s represents a non-negative int""" �

5	
 341267	

341,267	
,	

commafy	

5341	

5	

267	

5,341	
 ,	
 267	

commafy	

Always? When?	
 Always!	

Approach 1	
 Approach 2	

How to Break Up a Recursive Solution?	

def commafy(s):
 """Returns: string with commas every 3 digits�
 e.g. commafy('5341267') = '5,341,267'�
 Precondition: s represents a non-negative int"""
 # No commas if too few digits.
 if len(s) < 3:
 return s

 # Add the comma before last 3 digits
 return commafy(s[:-3]) + ',' + s[-3:] Recursive case	

Base case	

How to Break Up a Recursive Function?	

def exp(b, c)
 """Returns: bc
 Precondition: b a float, c ≥ 0 an int"""
	

Approach 1	
 Approach 2	

12256 = 12 × (12255)	

Recursive	

12256 = (12128) × (12128)	

Recursive	
 Recursive	

bc = b × (bc-1)	
 bc = (b×b)c/2 if c even	

Raising a Number to an Exponent	

def exp(b, c)
 """Returns: bc
 Precondition: b a float, �
 c ≥ 0 an int""”
 # b0 is 1	

 if c == 0:	

 return 1	

 	

 # c > 0	

 if c % 2 == 0:	

 return exp(b*b,c/2)	

 	

 return b*exp(b*b,c/2)	

c	
 # of calls	

0	
 0	

1	
 1	

2	
 2	

4	
 3	

8	
 4	

16	
 5	

32	
 6	

2n 	
 n + 1	

32768 is 215	

b32768 needs only 215 calls!	

Hilbert(1):	

Hilbert(2):	

Hilbert(n):	
 H(n-1) 
down	

H(n-1) 
down	

H
(n-1) 
left	

H
(n

-1
) 

rig
ht
	

Hilbert’s Space Filling Curve	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

2n	

2n	

Hilbert’s Space Filling Curve	

•  Given a box	

•  Draw 2n×2n���

grid in box	

•  Trace the curve	

•  As n goes to ∞,���

curve fills box	

Basic Idea	

