
10/4/12	

1	

Example: Reversing a String	

•  Precise Specification:	

§  Returns: reverse of s	

•  Solving with recursion	

§  Suppose we can reverse ���

a smaller string���
(e.g. less one character)	

§  Can we use that solution
to reverse whole string?	

•  Often easy to understand
first without Python	

§  Then sit down and code	

H	

 e	

 l	

 l	

 o	

 !	

!	

 o	

 l	

 l	

 e	

 H	

e	

 l	

 l	

 o	

 !	

!	

 o	

 l	

 l	

 e	

H	

Example: Reversing a String	

def reverse(s):

 """Returns: reverse of s

 Precondition: s a string"""

 # {s is empty}

 if s == '':

 return s

 # { s at least one char }

 # (reverse of s[1:])+s[0]

 return reverse(s[1:])+s[0]	

e	

 l	

 l	

 o	

 !	

!	

 o	

 l	

 l	

 e	

H	

1.  Precise specification?	

2.  Base case: correct?	

3.  Recursive case: ���

progress to termination?	

4.  Recursive case: correct?	

✔	

✔	

✔	

✔	

have to be the same	

Example: Palindromes	

•  String with ≥ 2 characters is a palindrome if:	

§  its first and last characters are equal, and	

§  the rest of the characters form a palindrome	

•  Example:	

AMANAPLANACANALPANAMA	

•  Precise Specification:	

 def ispalindrome(s):

 """Returns: True if s is a palindrome"""

has to be a palindrome	

Example: Palindromes	

•  String with ≥ 2 characters is a palindrome if:	

§  its first and last characters are equal, and	

§  the rest of the characters form a palindrome	

•  Recursive Function:	

def ispalindrome(s):�
 """Returns: True if s is a palindrome"""�
 if len(s) < 2:�
 return True

 // { s has at least two characters }

 return s[0] == s[–1] and ispalindrome(s[1:-1])

Recursive case	

Base case	

Recursive
Definition

Example: More Palindromes	

Precise Specification	

def ispalindrome2(s):

 """Returns: True if s is a palindrome

 Case of characters is ignored."""

 if len(s) < 2:

 return True�

 // { s has at least two characters }

 return (equals_ignore_case(s[0],s[–1])

 and ispalindrome2(s[1:-1]))

def equals_ignore_case (a, b):

 """Returns: True if a and b are same ignoring case"""

 return a.upper() == b.upper()

Example: More Palindromes	

 def ispalindrome3(s):

 """Returns: True if s is a palindrome

 Case of characters and non-letters ignored."""

 return ispalindrome2(depunct(s))

 def depunct(s):

 """Returns: s with non-letters removed"""

 if s == '':

 return s

 # use string.letters to isolate letters

 return (s[0]+deblank(s[1:]) if s[0] in string.letters�

 else deblank(s[1:]))

Use helper functions!	

•  Often easy to break a

problem into two	

•  Can use recursion more

than once to solve	

10/4/12	

2	

How to Break Up a Recursive Function?	

def commafy(s):

 """Returns: string with commas every 3 digits�
 e.g. commafy('5341267') = '5,341,267'�
 Precondition: s represents a non-negative int""" �

5	

 341267	

341,267	

,	

commafy	

5341	

5	

267	

5,341	

 ,	

 267	

commafy	

Always? When?	

 Always!	

Approach 1	

 Approach 2	

How to Break Up a Recursive Solution?	

def commafy(s):

 """Returns: string with commas every 3 digits�
 e.g. commafy('5341267') = '5,341,267'�
 Precondition: s represents a non-negative int"""

 # No commas if too few digits.

 if len(s) < 3:

 return s

 # Add the comma before last 3 digits

 return commafy(s[:-3]) + ',' + s[-3:]
 Recursive case	

Base case	

How to Break Up a Recursive Function?	

def exp(b, c)

 """Returns: bc

 Precondition: b a float, c ≥ 0 an int"""

	

Approach 1	

 Approach 2	

12256 = 12 × (12255)	

Recursive	

12256 = (12128) × (12128)	

Recursive	

 Recursive	

bc = b × (bc-1)	

 bc = (b×b)c/2 if c even	

Raising a Number to an Exponent	

def exp(b, c)

 """Returns: bc

 Precondition: b a float, �
 c ≥ 0 an int""”

 # b0 is 1	

 if c == 0:	

 return 1	

 	

 # c > 0	

 if c % 2 == 0:	

 return exp(b*b,c/2)	

 	

 return b*exp(b*b,c/2)	

c	

 # of calls	

0	

 0	

1	

 1	

2	

 2	

4	

 3	

8	

 4	

16	

 5	

32	

 6	

2n 	

 n + 1	

32768 is 215	

b32768 needs only 215 calls!	

Hilbert(1):	

Hilbert(2):	

Hilbert(n):	

 H(n-1) 
down	

H(n-1) 
down	

H
(n-1) 
left	

H
(n

-1
) 

rig
ht
	

Hilbert’s Space Filling Curve	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

2n	

2n	

Hilbert’s Space Filling Curve	

•  Given a box	

•  Draw 2n×2n���

grid in box	

•  Trace the curve	

•  As n goes to ∞,���

curve fills box	

Basic Idea	

