
Call Stacks	

Lecture 9	

	

Announcements for Today	

Reading	

•  Reread Chapter 3	

•  10.0-10.2, 10.4-10.6 for Tue	

Assignments	

•  Work on your revisions	

§  Want done by Monday	

•  Assignment 2 Tuesday	

§  Due IN CLASS	

§  Get help now if need it	

•  Assignment 3 posted	

§  Due in two stages	

§  Part 1 due Oct. 1 (pass/fail)	

§  Part 2 due Oct. 11 (graded)	

9/20/12	

 Call Stacks	

 2	

•  Prelim, Oct 4th 7:30-9:30	

§  Material up to next Tuesday	

§  Study guide next week	

•  Conflict with Prelim time?	

§  Submit to Prelim 1 Conflict

assignment on CMS	

§  Do not submit if no conflict	

Modeling Storage in Python	

	

•  Call Frame	

§  Variables in function call	

§  Deleted when call done	

•  Global Space	

§  Global variables	

§  Also function names!	

§  All last until you quit	

•  Heap Space	

§  Where “folders” are stored	

§  Have to access indirectly	

9/20/12	

 Call Stacks	

 3	

43001122	

p

	

	

	

	

	

	

43001122	

 1.0

Point	

x

incr_x

43001122	

q

Global Space	

Call Frame	

 2.0 y
 3.0 x

Heap Space	

Modeling Storage in Python	

	

•  Call Frame	

§  Variables in function call	

§  Deleted when call done	

•  Global Space	

§  Global variables	

§  Also function names!	

§  All last until you quit	

•  Heap Space	

§  Where “folders” are stored	

§  Have to access indirectly	

9/20/12	

 Call Stacks	

 4	

43001122	

p

	

	

	

	

	

	

43001122	

 1.0

Point	

x

incr_x

43001122	

q

Global Space	

Call Frame	

 2.0 y
 3.0 x

Heap Space	

Will cover later ���

in this course	

When Do We Need to Draw a Folder?	

•  When the value contains other values	

§  This is what we are calling ‘objects’	

•  When the value is mutable	

9/20/12	

 Call Stacks	

 5	

Type	

 Container?	

 Mutable?	

int
 No	

 No	

float
 No	

 No	

str
 Yes*	

 No	

Point
 Yes	

 Yes	

RGB
 Yes	

 Yes	

* Contains characters, which is not a stand-alone type	

x	

	

	

	

	

	

	

42982013	

2.5

float	

2.5	

x	

42982013	

x	

NO	

YES	

Structure of Global Space	

•  Global space is defined relative to a module	

§  Module you run with command python <filename>

§  Interactive prompt >>> is also a module with no name	

•  Global space is broken up into namespaces	

§  Variables and functions for each imported module	

§  What the book calls “module” frame	

§  Contains global variables for that module	

§  But not a call frame! Lasts until you quit.	

9/20/12	

 Call Stacks	

 6	

Global Space	

(for a module)	

Module math.py

	

Use math. prefix	

Module point.py

	

Use point. prefix	

…	

Other Namespaces:	

Active Namespace

	

No prefix needed	

• Var/funcs defined in this module	

• Var/funcs imported with from

Review: Call Frames	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/20/12	

 Call Stacks	

 7	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade
 1	

50.0	

x

1	

Call: to_centigrade(50.0) 	

Only at the End!	

What is happening here?	

Global Space 	

(for globals.py)	

Function Access to Global Space	

•  All function definitions ���
are in some module	

•  Call can access global
space for that module	

§  math.cos: global for math	

§  temperature.to_centigrade

uses global for temperature	

•  But cannot change values	

§  Assignment to a global
makes a new local variable!	

§  Why we limit to constants	

9/20/12	

 Call Stacks	

 8	

show_a
 1	

4	

a

globals.py

"""Show how globals work"""

a = 4 # global space

def show_a():

print a # shows global

Global Space 	

(for globals.py)	

Function Access to Global Space	

•  All function definitions ���
are in some module	

•  Call can access global
space for that module	

§  math.cos: global for math	

§  temperature.to_centigrade

uses global for temperature	

•  But cannot change values	

§  Assignment to a global
makes a new local variable!	

§  Why we limit to constants	

9/20/12	

 Call Stacks	

 9	

change_a

3.5	

a

4	

a

globals.py

"""Show how globals work"""

a = 4 # global space

def change_a():

a = 3.5 # local variable

Text (Section 3.10) vs. Class	

Textbook	

 This Class	

9/20/12	

 Call Stacks	

 10	

 def to_centigrade(x):

 return 5*(x-32)/9.0

Call: to_centigrade(50.0) 	

Definition:	

to_centigrade
 1	

50.0	

x

to_centigrade
 x –> 50.0

Text (Section 3.10) vs. Class	

Textbook	

 This Class	

9/20/12	

 Call Stacks	

 11	

 def to_centigrade(x):

 return 5*(x-32)/9.0

Call: to_centigrade(50.0) 	

Definition:	

to_centigrade
 1	

50.0	

x

to_centigrade
 x –> 50.0

No instruction counter	

Variables are not boxes	

Aside: What Happens Each Frame Step?	

•  The instruction counter always changes	

•  The contents only change if	

§ You add a new variable	

§ You change an existing variable	

§ You delete a variable	

•  If a variable refers to a mutable object	

§ The contents of the folder might change	

	

9/20/12	

 Call Stacks	

 12	

Frames and Helper Functions	

def last_name_first(s):

"""Precondition: s in the form�

<first-name> <last-name>""" �
first = first_name(s)

last = last_name(s)

return last + ',' + first �

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

	

9/20/12	

 Call Stacks	

 13	

last_name_first	

 1	

'Walker White'
1	

2	

3	

1	

2	

s

Frames and Helper Functions	

def last_name_first(s):

"""Precondition: s in the form�

<first-name> <last-name>""" �
first = first_name(s)

last = last_name(s)

return last + ',' + first �

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

	

9/20/12	

 Call Stacks	

 14	

last_name_first	

 1	

'Walker White'
1	

2	

3	

1	

2	

s

first

first_name	

 1	

'Walker White'
s

Not done. Do not erase!	

Frames and Helper Functions	

def last_name_first(s):

"""Precondition: s in the form�

<first-name> <last-name>""" �
first = first_name(s)

last = last_name(s)

return last + ',' + first �

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

	

9/20/12	

 Call Stacks	

 15	

last_name_first	

 1	

'Walker White'
1	

2	

3	

1	

2	

s

first

first_name	

 2	

'Walker White'
s

end
 6

Frames and Helper Functions	

def last_name_first(s):

"""Precondition: s in the form�

<first-name> <last-name>""" �
first = first_name(s)

last = last_name(s)

return last + ',' + first �

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

	

9/20/12	

 Call Stacks	

 16	

last_name_first	

 2	

'Walker White'
1	

2	

3	

1	

2	

s

first
 'Walker'

Frames and Helper Functions	

def last_name_first(s):

"""Precondition: s in the form�

<first-name> <last-name>""" �
first = first_name(s)

last = last_name(s)

return last + '.' + first �

def last_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[end+1:]

	

9/20/12	

 Call Stacks	

 17	

last_name_first	

 2	

'Walker White'
1	

2	

3	

1	

2	

s

first
 'Walker'

last_name	

 1	

'Walker White'
s

last

The Call Stack	

•  Functions are “stacked”	

§  Cannot remove one above ���

w/o removing one below	

§  Sometimes draw bottom up���

(better fits the metaphor)	

•  Stack represents memory ���

as a “high water mark”	

§  Must have enough to keep the

entire stack in memory	

§  Error if cannot hold stack	

9/20/12	

 Call Stacks	

 18	

Frame 1	

Frame 2	

Frame 3	

Frame 4	

Frame 6	

Frame 5	

calls	

calls	

calls	

calls	

The Call Stack	

•  Functions are “stacked”	

§  Cannot remove one above ���

w/o removing one below	

§  Sometimes draw bottom up���

(better fits the metaphor)	

•  Stack represents memory ���

as a “high water mark”	

§  Must have enough to keep the

entire stack in memory	

§  Error if cannot hold stack	

9/20/12	

 Call Stacks	

 19	

Frame 1	

Frame 2	

Frame 3	

Frame 4	

Frame 6	

calls	

calls	

calls	

calls	

Book adds a special
“frame” called module.	

This is WRONG!	

Module is global space	

Errors and the Call Stack	

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

if __name__ == '__main__':

print function_1(1,0)

When you crash, get the call stack:
Traceback (most recent call last):

 File "error.py", line 20, in <module>

 print function_1(1,0)

 File "error.py", line 8, in function_1

 return function_2(x,y)

 File "error.py", line 12, in function_2

 return function_3(x,y)

 File "error.py", line 16, in function_3

 return x/y

9/20/12	

 Call Stacks	

 20	

Make sure you can see
line numbers in Komodo.

Preferences è Editor	

Errors and the Call Stack	

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

if __name__ == '__main__':

print function_1(1,0)

When you crash, get the call stack:
Traceback (most recent call last):

 File "error.py", line 20, in <module>

 print function_1(1,0)

 File "error.py", line 8, in function_1

 return function_2(x,y)

 File "error.py", line 12, in function_2

 return function_3(x,y)

 File "error.py", line 16, in function_3

 return x/y

9/20/12	

 Call Stacks	

 21	

Make sure you can see
line numbers in Komodo.

Preferences è Editor	

Where error occurred
(or where was found)	

Application code.	

Not a frame!	

Assert Statements	

•  Way to force an error	

§  Why would you do this?	

•  Enforce preconditions!	

§  Put precondition as assert.	

§  If violate precondition, ���

the program crashes	

•  Provided code in A3 ���

uses asserts heavily	

def exchange(amt, from_c, to_c)

"""Returns: amt from exchange

 Precondition: amt is a float…"""

assert type(amt) == float

…

9/20/12	

 Call Stacks	

 22	

 assert <boolean> # Creates error if <boolean> false

 assert <boolean>, <string> # As above, but displays <String>

See asserts.py for more	

Recovering from Errors	

•  try-except blocks allow us to recover from errors	

§  Do the code that is in the try-block	

§  Once an error occurs, jump to the catch	

•  Example:	

try:

input = raw_input() # get number from user

x = float(input) # convert string to float

print 'The next number is '+`x+1`

except:

print 'Hey! That is not a number!'

might have an error	

executes have an error	

9/20/12	

 23	

Call Stacks	

Recovering from Errors	

•  try-catch blocks allow us to recover from errors	

§  Do the code that is in the try-block	

§  Once an error occurs, jump to the catch	

•  Example:	

try:

input = raw_input() # get number from user

x = float(input) # convert string to float

print 'The next number is '+`x+1`

except:

print 'Hey! That is not a number!'

9/20/12	

 24	

Call Stacks	

•  Similar to if-else

§  Except always does try

§  Just might not do all ���

of the try block	

Try-Except is Very Versatile	

def isfloat(s):

"""Returns: true if string s
represents a float"""

try:

x = float(s)

return True

except:

return False

9/20/12	

 Call Stacks	

 25	

Conversion to a
float might fail	

If attempt succeeds, ���
string s is a float 	

Otherwise, it is not	

Try-Except and the Call Stack	

recover.py

def function_1(x,y):

try:

return function_2(x,y)

except:

return float('inf')

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

•  Error “pops” frames off stack	

§  Starts from the stack bottom	

§  Continues until it sees that

current line is in a try-block	

§  Jumps to except, and then

proceeds as if no error 	

9/20/12	

 Call Stacks	

 26	

function_1

function_2

function_3

pops	

pops	

line in a try	

Try-Except and the Call Stack	

recover.py

def function_1(x,y):

try:

return function_2(x,y)

except:

return float('inf')

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

•  Error “pops” frames off stack	

§  Starts from the stack bottom	

§  Continues until it sees that

current line is in a try-block	

§  Jumps to except, and then

proceeds as if no error 	

•  Example:	

>>> print function_1(1,0)

inf

>>>

9/20/12	

 Call Stacks	

 27	

No traceback!	

How to return	

∞ as a float.	

