
Algorithm Design	

Lecture 8	

Announcements for Today	

Reading	

•  Chapter 4 today	

•  Reread Chapter 3 for Thurs	

§  Will review call frames	

§  “Convert” his frames to ours	

•  A2 due next week (Tues)	

•  A3 posted this Thursday	

§  Due in 1.5 weeks	

Assignment 1	

•  We have started grading!	

§  Should have your grade

tomorrow morning	

§  Resubmit until correct	

•  If you were close…	

§  Will get feedback in CMS	

§  Fix your assignment	

•  If you were very wrong…	

§  Will be contacted tonight!	

§  Will hold one-on-ones Wed	

9/18/12	
 Alogrithm Design	
 2	

More Assignments	

Algorithms: Heart of Computer Science	

•  Algorithm: A step-by-step procedure for how to do
something (usually a calculation).	

•  Implementation: How to write an algorithm in a
specific programming language	

•  Good programmers know how to separate the two	

§  Work out algorithm on paper or in head	

§  Once done, implement it in the language	

§  Limits errors to syntax errors (easy to find), not ���

conceptual errors (much, much harder to find) 	

•  Key to designing algorithms: stepwise refinement	

	

9/18/12	
 Alogrithm Design	
 3	

Algorithms: Heart of Computer Science	

•  Algorithm: A step-by-step procedure for how to do
something (usually a calculation).	

•  Implementation: How to write an algorithm in a
specific programming language	

•  Good programmers know how to separate the two	

§  Work out algorithm on paper or in head	

§  Once done, implement it in the language	

§  Limits errors to syntax errors (easy to find), not ���

conceptual errors (much, much harder to find) 	

•  Key to designing algorithms: stepwise refinement	

	

9/18/12	
 Alogrithm Design	
 4	

Python cannot
“understand” you	

Python does what you
say, not what you meant	

Stepwise Refinement: Basic Principles	

•  Write Specifications First ���
Write a function specification before writing its body	

•  Take Small Steps ���
Do a little at a time; follow the Mañana Principle	

•  Run as Often as You Can ���
This can catch syntax errors	

•  Separate Concerns ���
Focus on one step at a time	

•  Intersperse Programming and Testing ���
When you finish a step, test it immediately	

9/18/12	
 Alogrithm Design	
 5	

Mañana Principle	

•  If not in current step, delay to “tomorrow”	

§ Use comments to write steps in English	

§ Add “stubs” to allow you to run program often	

§  Slowly replace stubs/comments with real code	

•  Only create new local variables if you have to	

•  Sometimes results in creation of more functions	

§  Replace the step with a function call	

§  But leave the function definition empty for now	

§  This is called top-down design	

9/18/12	
 Alogrithm Design	
 6	

Function Stubs	

Procedure Stubs	

•  Single statement: pass
§  Body cannot be empty	

§  This command does nothing	

•  Example:	

def foo():

pass

Fruitful Stubs	

•  Single return statement	

§  Type should match spec.	

§  Return a “default value”	

•  Example:	

def first_four_letters(s):

return ' ' # empty string

9/18/12	
 Alogrithm Design	
 7	

Purpose of Stubs	

Create a program that may not be correct, but does not crash.	

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'
	

	
def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>
�

 Precondition: s is in the form <first-name> <last-name>�
with one blank between the two names"""

 # Find the first name
 # Find the last name
 # Put them together with a comma
 return ' ' # Currently a stub

9/18/12	
 Alogrithm Design	
 8	

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'
	

	
def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>
�

 Precondition: s is in the form <first-name> <last-name>�
with one blank between the two names"""

 end_first = s.find(' ')
 first_name = s[:end_first]

 # Find the last name
 # Put them together with a comma
 return first_name # Still a stub

9/18/12	
 Alogrithm Design	
 9	

Refinement: Creating Helper Methods	

	

	

def last_name_first(s):
 """Returns: copy of s in the form �

<last-name>, <first-name>�
Precondition: s is in the form�
<first-name> <last-name> with�
with one blank between names""" �
first = first_name(s)

 # Find the last name
Put together with comma
return first # Stub �

	
 	
	

	
def first_name(s):
 """Returns: first name in s�
 Precondition: s is in the form�
 <first-name> <last-name> with�
 one blank between names""" �
 end = s.find(' ')
 return s[:end]
	
	

9/18/12	
 Alogrithm Design	
 10	

Refinement: Creating Helper Methods	

	

	

def last_name_first(s):
 """Returns: copy of s in the form �

<last-name>, <first-name>�
Precondition: s is in the form�
<first-name> <last-name> with�
with one blank between names""" �
first = first_name(s)

 # Find the last name
Put together with comma
return first # Stub �

	
 	
	

def first_name(s):
 """Returns: first name in s�
 Precondition: s is in the form�
 <first-name> <last-name> with�
 one blank between names""" �
 end = s.find(' ')
 return s[:end]
	
	

9/18/12	
 11	

Do This Sparingly	

•  If you might use this step in

another function later	

•  If implementation is rather

long and complicated	

Example: Reordering a String	

•  last_name_first('Walker White') is 'White, Walker'
	

	
def last_name_first(s):�

"""Returns: copy of s in form <last-name>, <first-name>
�

 Precondition: s is in the form <first-name> <last-name>�
with one or more blanks between the two names"""

 # Find the first name
 # Find the last name
 # Put them together with a comma
 return ' ' # Currently a stub

9/18/12	
 Alogrithm Design	
 12	

Exercise: Anglicizing an Integer	

•  anglicize(1) is “one”	

•  anglicize(15) is “fifteen”	

•  anglicize(123) is “one hundred twenty three”	

•  anglicize(10570) is “ten thousand five hundred	

def anglicize(n):
 """Returns: the anglicization of int n.

�

 Precondition: 0 < n < 1,000,000"""
 pass # ???
	
	

9/18/12	
 Alogrithm Design	
 13	

Exercise: Anglicizing an Integer	

def anglicize(n):
 """Returns: the anglicization of int n.

�

 Precondition: 0 < n < 1,000,000"""
 # if < 1000, provide an answer

 # if > 1000, break into hundreds, thousands parts
 # use the < 1000 answer for each part , and glue
 # together with "thousands" in between
 return '' # empty string
	
	

9/18/12	
 Alogrithm Design	
 14	

Exercise: Anglicizing an Integer	

def anglicize(n):
 """Returns: the anglicization of int n.

�

 Precondition: 0 < n < 1,000,000"""
 if n < 1000: # no thousands place

 return anglicize1000(n)
 if n % 1000 == 0: # no hundreds, only thousands

 return anglicize1000(n/1000) + ' thousand'
 else: # mix the two
 return (anglicize1000(n/1000) + ' thousand '+ �

 anglicize1000(n))
	
	
9/18/12	
 Alogrithm Design	
 15	

Exercise: Anglicizing an Integer	

def anglicize(n):
 """Returns: the anglicization of int n.

�

 Precondition: 0 < n < 1,000,000"""
 if n < 1000: # no thousands place

 return anglicize1000(n)
 if n % 1000 == 0: # no hundreds, only thousands

 return anglicize1000(n/1000) + ' thousand'
 else: # mix the two
 return (anglicize1000(n/1000) + ' thousand '+ �

 anglicize1000(n))
	
	
9/18/12	
 Alogrithm Design	
 16	

Now implement this.	

See anglicize.py	

