[ecture 5

Defining Functions

Announcements for this Lecture

Last Call Readings
* Quiz: About the Course e Sections 3.5 — 3.13 today
e Take it by tomorrow e Also6.1-64
* Also remember the survey e See online readings for Tues
Install Party:
7pm Sunday
ACCEL Lab

8/30/12 Modules & Functions

First Assignment Posted This Weekend

e Due Monday, September 17

= Submit earlier so we can start iterative feedback process

 Work alone or with one partner
= Partners “ group themselves”~ on the CMS
= Only one person submits the files.

* Partners must do the work together, sit next to each other,
with each taking turns “driving” (writing the code)

* Academic Integrity

* Never look at someone’s code or show yours to someone else
= Never possess someone else’s code (except your partner)

2/2/12 Classes

One-on-One Sessions

e Starting Tomorrow: 1/2-hour one-on-one sessions

* Bring computer and work with instructor, TA or consultant
* Hands, dedicated help with Lab 2 and/or Lab 3
= To prepare for assignment, but no help assignment itself

 Limited availability: we cannot get to everyone
= Students with experience or confidence should hold back

e Sign up online in CMS: first come, first served
* Choose assignment One-on-One
= Pick a time that works for you; will add slots as possible
= Can sign up starting at lpm TODAY

2/2/12 Classes

Special Module for Assignment: urllib@

e urllib? has a function called urlopen(url)
= Single argument: string with a url
= Example: urllib&.urlopen(‘http://www.cornell.edu')

= Returns an object: a webpage!
(But type() will identify it as an instance)

= If url 1s invalid, Python will crash

e Object has no attributes, but two methods:
= geturl(): Returns the url of the website
= read(): Returns webpage HTML as a string

2/2/12 Classes

We Write Programs to Do Things

* Functions are the key doers

Function Call Function Definition

e Command to do the function * Defines what function does

)

'Hello '+n+'!"

greet(‘Walker') def greet(n
[Function

Header

declaration of

argument to
assign to n

parameter n

Function
Body
(indented)

* Parameter: variable that is listed within
the parentheses of a method header.

* Argument: a value to assign to the method

9/7/12 0L C
parameter when it is called

Anatomy of a Function Definition

EIN EII

def greet(n): % Function Header }
"""Prints a greeting to the name n

<[Docstring }
Precondition: n is a string Specification

representing a person’s name"""

print 'Hello '+n+'!' Statements to
print 'How are you?' execute when called

The vertical line Use vertical lines when you write Python
indicates indentation on exams so we can see indentation

2/2/12 Classes

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

e Functions that do something ¢ Functions that give a value
e (Call them as a statement e Call them in an expression
* Example: greet('Walker') e Example: x = round(2.56,1)

Historical Aside

e Historically “function” = “fruitful function”

e But now we use ‘“function’ to refer to both

2/2/12 Classes 8

The return Statement

* Fruitful functions require a return statement
e Format: return <expression>

= Provides value when call 1s used 1n an expression
= Also stops executing the function!

* Any statements after a return are ignored

e Example: temperature converter function
def to_centigrade(x):
""Returns: X converted to centigrade™""
return 5*(x-32)/9.0

2/2/12 Classes

Functions and Modules

e The purpose of modules is function definitions
* Function definitions are written in module file

* Import the module to call the functions

* Your Python workflow (right now) 1s

1. Write a function in a module (a .py file)

Open up the command shell

Move to the directory with this file
Start Python (type python)

Import the module

o B gs B

Try out the function

2/2/12 Classes

Aside: Constants

e Modules often have variables outside a function
= We call these global variables
= Accessible once you import the module

* Global variables should be constants
= Variables that never, ever change
* Mnemonic representation of important value
= Kxample: math.pi, math.e in math

 In this class, constant names are capitalized!

" So we can tell them apart from non-constants

2/2/12 Classes

11

Module Example: Temperature Converter

temperature.py
"""Conversion functions between fahrenheit and centrigrade"""

Functions
def to_centigrade(x):

"""Returns: x converted to centigrade""" Stvle Guidel; N\
return 5*(x-32)/9.0 tyle Guidelime:
Two blank lines between
def to_fahrenheit(x): function definitions P

"""Returns: x converted to fahrenheit"""
return 9*x/5.0+32

Constants
FREEZING_C = 0.0 # temp. water freezes

2£2/12 Classes 12

Draw template on

How Do Functions Work? a piece of paper

* Function Frame: Representation of function call
* A conceptual model of Python

Draw parameters e Number of statement in the
as variables function body to execute next
(named boxes) e Starts with 1

function name instruction counter

parameters

local variables (later in lecture)

9/10/12 Methods & Constructors 13

Example: to_centigrade(50.0)

1. Draw a frame for the call

2. Assign the argument value
to the parameter (in frame)

3. Execute the function body
= Look for variables in the frame

= If not there, look for global
variables with that name

4. FErase the frame for the call

def to_centigrade(x):
1 return 5*(x-32)/9.0

Initial call frame
(before exec body)

to_centigrade 1

x [50.0

/

[next line to execute }

9/10/12 Methods & Constructors

14

Example: to_centigrade(50.0)

2. Assign the argument value

1. Draw a frame for the call [
to the parameter (in frame)

Executing the
return statement

3. Execute the function body

to_centigrade
= Look for variables in the frame

= If not there, look for global
variables with that name x [50.0
4. Erase the frame for the call /
def to_centigrade(x): The return terminates;
1 return 5*(x-32)/9.0 no next line to execute

9/10/12 Methods & Constructors

Example: to_centigrade(50.0)

1. Draw a frame for the call

2. Assign the argument value
to the parameter (in frame)

3. Execute the function body

= Look for variables in the frame

= If not there, look for global 00{
variables with that name @ P

4. FErase the frame for the call "31

1 return 5*(x-32)/9.0

def to_centigrade(x): [But don’t actually }

crasc on an €xam

9/10/12 Methods & Constructors

16

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
|l||llswap V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a |1 b |2
>>>h =2

>>> gwap(a,b)

2/2/12 Classes

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a |1 b |2
>>>h =2
>>> swap(a,b) tmp | 1

2/2/12 Classes

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> g, =] a |X 2 b |2
>>>h =2
>>> gwap(a,b) tmp | 1

2/2/12 Classes

Call Frames vs. Global Variables

 This does not work: Global Variables
def swap(a,b):
"""SW&p V&I’S a &‘, bllllll a 1 b 2
tmp = & Call Frame
2 a=">
b =tmp swap
>>> 9 =1 a x 2 b x 1
>>>h =2
>>> gwap(a,b) tmp | 1

2/2/12 Classes

Example with Objects

e Mutable objects can be Global STUFF
altered in a function call 43001122 D | 43001122
= (Object vars hold names! :
Point
= Folder accessed by both x| 0.0
global var & parameter
 Example:
: Call Frame
def incr_x(q):
iner_x 1
1 xX=qx+1
>>>] = POlﬂt() q | 43001122

>>> iner_x(p)

2/2/12 Classes

21

Example with Objects

e Mutable objects can be Global STUFF
altered in a function call 43001122 D | 43001122
= (Object vars hold names! :
Point
= Folder accessed by both x | Q0 1.0

global var & parameter

 Example:
: Call Frame
def incr_x(q):
iner_x
1 xX=qx+1 =
>>>p = POlﬂt() d 43001122

>>> iner_x(p)

2/2/12 Classes

22

