
Defining Functions	

Lecture 5	

Announcements for this Lecture	

Last Call	

•  Quiz: About the Course	

•  Take it by tomorrow	

•  Also remember the survey	

Readings	

•  Sections 3.5 – 3.13 today	

•  Also 6.1-6.4	

•  See online readings for Tues	

8/30/12	

 2	

Modules & Functions	

Install Party:���
7pm Sunday	

ACCEL Lab	

First Assignment Posted This Weekend	

•  Due Monday, September 17	

§  Submit earlier so we can start iterative feedback process	

•  Work alone or with one partner 	

§  Partners “group themselves” on the CMS	

§  Only one person submits the files.	

§  Partners must do the work together, sit next to each other,

with each taking turns “driving” (writing the code)	

•  Academic Integrity	

§  Never look at someone’s code or show yours to someone else	

§  Never possess someone else’s code (except your partner)	

2/2/12	

 Classes	

 3	

One-on-One Sessions	

•  Starting Tomorrow: 1/2-hour one-on-one sessions	

§  Bring computer and work with instructor, TA or consultant	

§  Hands, dedicated help with Lab 2 and/or Lab 3	

§  To prepare for assignment, but no help assignment itself	

•  Limited availability: we cannot get to everyone	

§  Students with experience or confidence should hold back	

•  Sign up online in CMS: first come, first served	

§  Choose assignment One-on-One	

§  Pick a time that works for you; will add slots as possible	

§  Can sign up starting at 1pm TODAY	

2/2/12	

 Classes	

 4	

Special Module for Assignment: urllib2

• urllib2 has a function called urlopen(url)

§  Single argument: string with a url	

§  Example: urllib2.urlopen('http://www.cornell.edu')

§  Returns an object: a webpage!���

(But type() will identify it as an instance)	

§  If url is invalid, Python will crash	

•  Object has no attributes, but two methods:	

§  geturl(): Returns the url of the website	

§  read(): Returns webpage HTML as a string	

2/2/12	

 Classes	

 5	

We Write Programs to Do Things	

•  Functions are the key doers	

9/7/12	

 Classes	

 6	

Function Call	

 Function Definition	

•  Command to do the function	

	

greet('Walker')	

	

•  Defines what function does	

	

def greet(n):	

	

 	

print 'Hello '+n+'!'

declaration of
parameter n	

argument to
assign to n	

•  Parameter: variable that is listed within ���
 the parentheses of a method header.	

•  Argument: a value to assign to the method ���
 parameter when it is called	

	

Function	

Header	

Function	

Body	

(indented)	

Anatomy of a Function Definition	

def greet(n):

"""Prints a greeting to the name n

Precondition: n is a string �
representing a person’s name"""

print 'Hello '+n+'!'

print 'How are you?'

2/2/12	

 Classes	

 7	

Function Header	

name	

 parameters	

Docstring
Specification	

Statements to
execute when called	

The vertical line
indicates indentation	

Use vertical lines when you write Python
on exams so we can see indentation	

Procedures vs. Fruitful Functions	

Procedures	

•  Functions that do something	

•  Call them as a statement	

•  Example: greet('Walker')

Fruitful Functions	

•  Functions that give a value	

•  Call them in an expression	

•  Example: x = round(2.56,1)

2/2/12	

 Classes	

 8	

Historical Aside	

•  Historically “function” = “fruitful function”	

•  But now we use “function” to refer to both	

The return Statement	

•  Fruitful functions require a return statement	

•  Format: return <expression>

§  Provides value when call is used in an expression	

§ Also stops executing the function!	

§ Any statements after a return are ignored	

•  Example: temperature converter function	

def to_centigrade(x):

"""Returns: x converted to centigrade"""

return 5*(x-32)/9.0

2/2/12	

 Classes	

 9	

Functions and Modules	

•  The purpose of modules is function definitions	

§  Function definitions are written in module file	

§  Import the module to call the functions	

•  Your Python workflow (right now) is	

1.  Write a function in a module (a .py file)	

2.  Open up the command shell	

3.  Move to the directory with this file	

4.  Start Python (type python)	

5.  Import the module	

6.  Try out the function	

2/2/12	

 Classes	

 10	

Aside: Constants	

•  Modules often have variables outside a function	

§ We call these global variables	

§ Accessible once you import the module	

•  Global variables should be constants	

§ Variables that never, ever change	

§ Mnemonic representation of important value	

§  Example: math.pi, math.e in math

•  In this class, constant names are capitalized!	

§  So we can tell them apart from non-constants	

2/2/12	

 Classes	

 11	

Module Example: Temperature Converter	

temperature.py

"""Conversion functions between fahrenheit and centrigrade"""

Functions

def to_centigrade(x):

 """Returns: x converted to centigrade"""

 return 5*(x-32)/9.0

def to_fahrenheit(x):

 """Returns: x converted to fahrenheit"""

 return 9*x/5.0+32

Constants

FREEZING_C = 0.0 # temp. water freezes

…	

2/2/12	

 Classes	

 12	

Style Guideline:	

Two blank lines between	

function definitions	

• Number of statement in the ���
 function body to execute next ���
• Starts with 1	

Draw parameters ���
as variables ���
(named boxes)	

How Do Functions Work?	

•  Function Frame: Representation of function call	

•  A conceptual model of Python	

9/10/12	

 Methods & Constructors	

 13	

Draw template on 	

a piece of paper	

 function name	

local variables (later in lecture)	

parameters	

instruction counter	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/12	

 Methods & Constructors	

 14	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade
 1	

50.0	

x

Initial call frame	

(before exec body)	

next line to execute	

1	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/12	

 Methods & Constructors	

 15	

 def to_centigrade(x):

 return 5*(x-32)/9.0

to_centigrade

50.0	

x

Executing the	

return statement	

The return terminates;	

no next line to execute	

1	

Example: to_centigrade(50.0) 	

1.  Draw a frame for the call	

2.  Assign the argument value

to the parameter (in frame)	

3.  Execute the function body	

§  Look for variables in the frame	

§  If not there, look for global

variables with that name	

4.  Erase the frame for the call	

9/10/12	

 Methods & Constructors	

 16	

 def to_centigrade(x):

 return 5*(x-32)/9.0
 But don’t actually

erase on an exam	

1	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

2/2/12	

 Classes	

 17	

1	

a	

 2	

b	

1	

2	

3	

 swap
 1	

1	

a	

 2	

b	

Global Variables	

Call Frame	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

2/2/12	

 Classes	

 18	

1	

a	

 2	

b	

swap
 2	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

2/2/12	

 Classes	

 19	

1	

a	

 2	

b	

swap
 3	

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

1	

2	

3	

Call Frames vs. Global Variables	

•  This does not work:	

def swap(a,b):

 """Swap vars a & b"""

 tmp = a

 a = b

 b = tmp

>>> a = 1

>>> b = 2

>>> swap(a,b)

2/2/12	

 Classes	

 20	

1	

a	

 2	

b	

swap

1	

a	

 2	

b	

Global Variables	

Call Frame	

1	

tmp	

✗	

2	

 ✗	

 1	

1	

2	

3	

Example with Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point()

>>> incr_x(p)

2/2/12	

 Classes	

 21	

43001122	

p

	

	

	

	

	

	

43001122	

 0.0
…

Point	

x

1	

incr_x
 1	

43001122	

q

Global STUFF	

Call Frame	

Example with Objects	

•  Mutable objects can be
altered in a function call	

§  Object vars hold names!	

§  Folder accessed by both

global var & parameter	

•  Example:	

def incr_x(q):

 q.x = q.x + 1

>>> p = Point()

>>> incr_x(p)

2/2/12	

 Classes	

 22	

43001122	

p

	

	

	

	

	

	

43001122	

 0.0
…

Point	

x

1	

incr_x

43001122	

q

Global STUFF	

Call Frame	

✗	

 1.0	

