
Strings & Objects	

Lecture 4	

Netids That Did Not Do the Quiz	

•  aal59	

•  abr75	

•  ank43	

•  cms242	

•  egm58	

•  gbf22	

•  gem67	

•  gj54	

•  xl237	

•  hy388	

•  jbm247	

•  jtk53	

•  ksk75	

•  kt429	

•  meb327	

•  mrr87	

•  srh78	

9/2/12	

 Objects & Strings	

 2	

Announcements for this Lecture	

Do the Quiz!	

•  No quiz; cannot take course	

•  You have one last time!	

•  Also remember the survey	

•  Chapter 8 (not 8.6, 8.11)	

•  Sections 3.5 – 3.13	

Today’s Lab	

•  Similar to last week’s lab	

§  Still answering a worksheet	

§  Not really writing programs	

§  You will be using modules, ���

but not writing them	

•  Preparation for Assignment 1	

§  Do not leave the lab before

you finish the String section	

§  Okay to do the rest at home	

8/30/12	

 3	

Modules & Functions	

Readings	

[xkcd.com]	

String: Text as a Value	

•  String are quoted characters	

§  'abc d' (Python prefers)	

§  "abc d" (most languages)	

•  How to write quotes in quotes?	

§  Delineate with “other quote”	

§  Example: " ' " or ' " '

§  What if need both " and ' ?	

•  Solution: escape characters	

§  Format: \ + letter	

§  Special or invisible chars	

9/2/12	

 Objects & Strings	

 4	

Char	

 Meaning	

\'
 single quote	

\"
 double quote	

\n
 new line	

\t
 tab	

\\
 backslash	

Type: str

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'

§  s[4] is 'd'

§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

9/2/12	

 Objects & Strings	

 5	

a	

 b	

 c	

 	

 d	

0	

 1	

 2	

 3 	

4	

H	

 e	

 l	

 l	

 o	

0	

 1	

 2	

 3 	

4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'

B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'

§  s[4] is 'd'

§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[3:6]?	

9/2/12	

 Objects & Strings	

 6	

a	

 b	

 c	

 	

 d	

0	

 1	

 2	

 3 	

4	

H	

 e	

 l	

 l	

 o	

0	

 1	

 2	

 3 	

4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'lo a'

B: 'lo'	

C: 'lo '	

D: 'o '	

E: I do not know	

CORRECT	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'

§  s[4] is 'd'

§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

9/2/12	

 Objects & Strings	

 7	

a	

 b	

 c	

 	

 d	

0	

 1	

 2	

 3 	

4	

H	

 e	

 l	

 l	

 o	

0	

 1	

 2	

 3 	

4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'

B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

String are Indexed	

•  s = 'abc d'	

•  Access characters with []	

§  s[0] is 'a'

§  s[4] is 'd'

§  s[5] causes an error	

§  s[0:2] is 'ab' (excludes c)	

§  s[2:] is 'c d'

•  Called “string slicing”	

•  s = 'Hello all'

•  What is s[:4]?	

9/2/12	

 Objects & Strings	

 8	

a	

 b	

 c	

 	

 d	

0	

 1	

 2	

 3 	

4	

H	

 e	

 l	

 l	

 o	

0	

 1	

 2	

 3 	

4	

 	

5	

a	

6	

l	

7	

l	

8	

A: 'o all'

B: 'Hello'	

C: 'Hell'	

D: Error!	

E: I do not know	

CORRECT	

Type: Set of values and the operations on them	

•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	

•  What if have a lot of points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	

•  We need a new type	

9/2/12	

 Objects & Strings	

 9	

x 2.0

y 3.0

z 5.0

	

	

	

	

	

	

object	

Type: Set of values and the operations on them	

•  Want a point in 3D space	

§  We need three variables	

§  x, y, z coordinates	

•  What if have a lot of points?	

§  Vars x0, y0, z0 for first point	

§  Vars x1, y1, z1 for next point	

§  …	

§  This can get really messy	

•  We need a new type	

9/2/12	

 Objects & Strings	

 10	

x 2.0

y 3.0

z 5.0

•  Can we stick them
together in a “folder”?	

•  Motivation for objects	

Objects: Organizing Data in Folders	

•  An object is like a manila folder	

•  It contains other variables	

§ Variables are called attributes	

§  Can change values of an attribute���

(with assignment statements)	

•  It has a “tab” that identifies it	

§ Unique number assigned by Python	

§ You cannot ever change this	

§ More on this in demo later	

9/2/12	

 Objects & Strings	

 11	

	

	

	

	

	

	

43001122	

x 2.0

y 3.0

z 5.0

Unique tab	

identifier	

Classes: Types for Objects	

•  Values must have a type	

§  An object is a value	

§  Object type is a class	

•  Modules provide classes 	

§  Example: point.py

§  Import to use Point

•  Will cover classes later	

§  Do not try to understand

the contents of point.py

§  Lot more to learn first	

	

9/2/12	

 Objects & Strings	

 12	

	

	

	

	

	

	

43001122	

x 2.0

y 3.0

z 5.0

Point	

class name	

Constructor: Function to make Objects	

•  How do we create objects?	

§  Other types have literals	

§  Example: 1, "abc", true 	

§  No such thing for objects	

•  Constructor Function: 	

§  Same name as the class	

§  Example: Point(0,0,0)	

§  Makes an object (manila folder)	

§  Returns folder name as value	

•  Example: p = Point(0,0,0)	

§  Creates a Point object	

§  Stores value (tab name) in p	

9/2/12	

 Objects & Strings	

 13	

43001122	

p	

Variable	

stores name	

not object	

	

instantiated	

object���
	

	

	

	

	

	

	

43001122	

x 0.0

y 0.0

z 0.0

Point	

Object Variables	

•  Variable stores object name	

§  Reference to the object 	

§  Reason for folder analogy	

•  Assignment uses object name	

§  Example: q = p	

§  Takes name from p	

§  Puts the name in q	

§  Does not make new folder!	

•  Use id() to see folder name	

§  id(p) evaluates to 43001122	

8/31/12	

 Types and Objects	

 14	

43001122	

p	

	

	

	

	

	

	

43001122	

x 0.0

y 0.0

z 0.0

Point	

43001122	

q	

Objects and Attributes	

•  Attributes are like variables	

§  Can use in expressions	

§  Can assign values to them	

•  Access: <variable>.<attr>

§  Example: p.x

§  Look like module variables	

§  But they are very different	

•  Putting it all together	

§  p.x = p.y + p.z

9/2/12	

 Objects & Strings	

 15	

	

	

	

	

	

	

43001122	

x 1.0

y 2.0

z 3.0

43001122	

p	

Point3d	

5.0	

✗	

Exercise: Attribute Assignment	

•  Recall, q gets name in p	

p = Point(0,0,0)

q = p

•  Execute the assignments:	

p.x = 5.6

q.x = 7.4

•  What is value of p.x?	

9/2/12	

 Objects & Strings	

 16	

43001122	

p	

 43001122	

q	

A: 5.6	

B: 7.4	

C: 43001122	

D: I don’t know	

	

	

	

	

	

	

43001122	

x 0.0

y 0.0

z 0.0

Point	

Exercise: Attribute Assignment	

•  Recall, q gets name in p	

p = Point(0,0,0)

q = p

•  Execute the assignments:	

p.x = 5.6

q.x = 7.4

•  What is value of p.x?	

9/2/12	

 Objects & Strings	

 17	

43001122	

p	

 43001122	

q	

A: 5.6	

B: 7.4	

C: 43001122	

D: I don’t know	

CORRECT	

	

	

	

	

	

	

43001122	

y 0.0

z 0.0

Point	

x 0.0 5.6	

✗	

 7.4	

✗	

Surprise: All Values are Objects!	

•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 2.5

>>> id(x)

•  But they are special	

§  Have no named attributes	

§  They are immutable���

(contents cannot change)	

§  So we can ignore folder	

9/2/12	

 Objects & Strings	

 18	

42982013	

x	

	

	

	

	

	

	

42982013	

2.5

float	

2.5	

x	

Surprise: All Values are Objects!	

•  Including basic values	

§  int, float, bool, str

•  Example:	

>>> x = 2.5

>>> id(x)

•  But they are special	

§  Have no named attributes	

§  They are immutable���

(contents cannot change)	

§  So we can ignore folder	

9/2/12	

 Objects & Strings	

 19	

42982013	

s	

	

	

	

	

	

	

42982013	

'abc d'	

str	

'abc d'	

s	

includes strings	

Methods: Functions Tied to Objects	

•  Method: function tied to object	

§  Has a function call part:���

<function-name>(<arguments>)	

§  But prefix it with variable name:���

<object-variable>.<function-call>	

§  Use of a method is a method call	

•  Example: p.distanceTo(q)	

§  Both p and q act as arguments	

§  Computes distance between two	

•  Why do it like this? 	

9/2/12	

 Objects & Strings	

 20	

	

	

	

	

	

	

43001122	

x 0.0

y 0.0

z 0.0

distanceTo(other)

Point	

43001122	

p	

Later…	

Strings Have Methods Too	

	

• find(sub)

§  Return the position of substring sub	

§  Return -1 if substring not found	

§  s.find('o') evaluates to 4	

• replace(old, new)

§  Returns a new string; original is unchanged	

§  Replaces all substrings old with new

§  s.replace('o','uh') evaluates to 'Helluh Wuhld!'

9/2/12	

 Objects & Strings	

 21	

s = 'Hello World!'
 See Python
API for more	

Where To From Here?	

•  OO Programming is about creating classes	

§  Eventually you will make your own classes	

§  But we need to learn other basics first	

•  Right now, just try to understand objects	

9/2/12	

 Objects & Strings	

 22	

	

	

	

	

	

	

43001122	

x 0.0 y 0.0 z 0.0

distanceTo(other)

Point	

 43001122	

p	

