
Modules &���
Functions	

Lecture 3	

Netids That Did Not Do the Quiz	

•  aal59	

•  abr75	

•  ajf235	

•  al728	

•  alb383	

•  ank43	

•  apj33	

•  awg68	

•  bhw44	

•  cdj44	

•  cfw56	

•  cjm279	

•  cvi3	

•  dg488	

•  djm438	

•  drh234	

•  ds653	

•  ech96	

•  efo5	

•  egm58	

•  gbf22	

•  gd243	

•  gem67	

•  gj54	

•  hc655	

•  hw386	

•  hy388	

•  iam9	

•  jbm247	

•  jc2543	

•  jjm448	

•  jl2879	

•  jrn56	

•  jt566	

•  jtk53	

•  jw834	

•  ksk75	

•  kt429	

•  lap248	

•  mdw97	

•  meb327	

•  mjs624	

•  mmb299	

•  mp723	

•  mrr87	

•  nhm42	

•  njf53	

•  otb6	

•  pwh37	

•  sar259	

•  sec269	

•  sk2448	

•  sr688	

•  srh78	

•  vkm22	

•  wpa26	

•  wta24	

•  xl237	

Readings for Next Two Lectures	

This Week	

•  Sections 3.1-3.4, 3.13	

•  Browse the Python API	

§  Do not need to read all of it	

§  Look over built-in functions	

§  Some interesting modules:���

math, str, and sys	

•  Sections 8.1, 8.2, 8.4, 8.5, 8.8	

•  PLive: ���
Activities 3-3.1, 3-3.2, 3-3.4
(not 3-3.3), 3-4.1, 3-4.2.	

•  (Old) Lecture on VideoNote	

8/30/12	
 3	
Modules & Functions	

Next Week	

[xkcd.com]	

Office Hours this Semester	

8/30/12	
 Modules & Functions	
 4	

classroom	

Office Hours	

Tue & Thu	

10-11	

Variables and Types	

•  Python is a dynamically typed language	

§ Variables can hold values of any type	

§  Type of value in variable can change over time	

•  The following is acceptable in Python:	

>>> x = 1 	

>>> x = x / 2.0 	

•  Alternative is a statically typed language	

§  Each variable restricted to values of just one type	

§  Java is an example of such a language	

8/28/12	
 Expressions & Variables	
 5	

ç x contains an int value 	

ç x contains a float value (why?) 	

Dynamic Typing	

•  Often want to track the type in a variable	

§ What is the result of evaluating x / y?	

§ Depends on whether x, y are int or float values	

•  Use expression type(<expression>) to get type	

§  type(2) evaluates to <type 'int'>
§  type(x) evaluates to type of contents of x

•  Can use in a boolean expression to test type	

§  type("abc") == str evaluates to True	

8/28/12	
 Expressions & Variables	
 6	

Eliminating Variables	

•  Sometimes want to get rid of a variable	

§ Not for performance; not a focus in Python	

§ Do it to make code cleaner/safer	

§  If refer to wrong variable, better it not exist (why?)	

•  Command: del <variable>	

§ Variable ceases to exist	

§  Expressions with variable will cause errors	

§ Needs an assignment to exist again	

8/28/12	
 Expressions & Variables	
 7	

Python Shell vs. Modules	

•  The interactive shell	

§  Simple to use	

§  Experience with Lab 1	

•  But very inefficient	

§  One command at a time	

§  What if need 1000+ lines?	

•  Alternative: modules	

§  Files with commands	

§  Write in a special editor	

•  Run module with import
§  Loads the file into Python	

§  Executes each line	

Using a Module	

Module Contents	

module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

8/30/12	
 Modules & Functions	
 9	

Single line comment	

(not executed)	

Docstring (note the Triple Quotes)	

Acts as a multiple-line comment	

Useful for code documentation	

Commands	

executed on import	

Not a command	

Does nothing	

Using a Module	

Module Contents	

module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

Python Shell	

>>> import module
>>>
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>
9
>>>

8/30/12	
 Modules & Functions	
 10	

x

module.x

help(module)	

“Module data” must be
prefixed by module name	

Prints docstring and
module contents	

Function Calls	

•  Python supports expressions with math-like functions	

§  A function in an expression is a function call	

§  Will explain the meaning of this later	

•  Function expressions have the form fun(x,y,…)	

	

•  Simplest example of functions are in module math

>>> import math
>>> math.sin(math.pi)

1/24/12	
 Overview, Types & Expressions	
 11	

function ���
name	

argument	

module variable	

module function	

Built-In Functions	

•  You have seen many functions already	

§  Type casting functions: int(), float(), bool()
§ Dynamically type an expression: type()
§ Help function: help()

•  Getting user input: raw_input()
• print <string> is not a function call	

§  It is simply a statement (like assignment)	

§ However, it is a function call in Python 3.x	

§  Python 3.x: print(<string>)

8/30/12	
 Modules & Functions	
 12	

Using the from Keyword	

>>> import math
>>> math.pi
3.141592653589793
>>> from math import pi
>>> pi
3.141592653589793
>>> from math import *
>>> cos(pi)
-1.0

8/30/12	
 Modules & Functions	
 13	

Must prefix with
module name	

No prefix needed
for variable pi	

No prefix needed ���
for anything in math

•  Be careful using from!	

•  Modules are namespaces	

§  There is only one variable or
function for each name	

§  Other modules may reuse
names for variable/function	

§  Prefix keeps them distinct	

•  Example: badpi.py

How Well Are You Following?	

Module Contents	

data.py

""" Module with two variables """

x = 4
y = 3

Python Shell	

>>> x = 1
>>> y = 2
>>> from data import x
>>> x+y
???

8/30/12	
 Modules & Functions	
 14	

A: 3	

B: 7	

C: 6	

D: 4	

E: I do not know	

CORRECT	

How Well Are You Following?	

Module Contents	

data.py

""" Module with two variables """

x = 4
y = 3

Python Shell	

>>> from data import *
>>> x = 3
>>> from data import x
>>> x+y
???

8/30/12	
 Modules & Functions	
 15	

A: 6	

B: 7	

C: Error!	

D: I do not know	

Importing a variable
“clobbers” any existing
variable of same name	

CORRECT	

Python Comes with Many Modules	

•  io
§  Read/write from files	

•  math
§  Mathematical functions	

•  random
§  Generate random numbers	

§  Can pick any distribution	

•  string
§  Useful string functions	

•  sys
§  Information about your OS	

•  Complete list:	

•  http://docs.python.org/library	

•  Library: built-in modules	

§  May change each release	

§  Why version #s are an issue	

•  Documentation is the API	

§  Application	

§  Programming 	

§  Interface	

•  Interface: specification of the
functions and data in a module	

8/30/12	
 Modules & Functions	
 16	

Reading the Python API	

8/30/12	
 Modules & Functions	
 17	

Function name	

Number of arguments	

What the function evaluates to	

The Komodo Editor	

8/30/12	
 Modules & Functions	
 18	

Current working
directory	

Tabs for open
module files	

Execution output
when module is “run”	

Current active module	

Line numbers	

See website for 	

how to add button	

Lab Next Week	

•  Working with modules	

§  Importing and accessing functions	

§ Writing your own modules	

•  Working with the Python API	

§  Reading function specifications	

§ Using them properly	

•  Getting us ready for the first assignment	

§ Missing: how to make your own functions	

	
8/30/12	
 Modules & Functions	
 19	

