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Netids That Did Not Do the Quiz	

•  aal59	

•  abr75	

•  ajf235	

•  al728	

•  alb383	

•  ank43	

•  apj33	

•  awg68	

•  bhw44	

•  cdj44	

•  cfw56	

•  cjm279	

•  cvi3	

•  dg488	

•  djm438	


•  drh234	

•  ds653	

•  ech96	

•  efo5	

•  egm58	

•  gbf22	

•  gd243	

•  gem67	

•  gj54	

•  hc655	

•  hw386	

•  hy388	

•  iam9	

•  jbm247	

•  jc2543	


•  jjm448	

•  jl2879	

•  jrn56	

•  jt566	

•  jtk53	

•  jw834	

•  ksk75	

•  kt429	

•  lap248	

•  mdw97	

•  meb327	

•  mjs624	

•  mmb299	

•  mp723	

•  mrr87	


•  nhm42	

•  njf53	

•  otb6	

•  pwh37	

•  sar259	

•  sec269	

•  sk2448	

•  sr688	

•  srh78	

•  vkm22	

•  wpa26	

•  wta24	

•  xl237	




Readings for Next Two Lectures	


This Week	


•  Sections 3.1-3.4, 3.13	

•  Browse the Python API	


§  Do not need to read all of it	

§  Look over built-in functions	

§  Some interesting modules:���

math, str, and sys	


•  Sections 8.1, 8.2, 8.4, 8.5, 8.8	


•  PLive: ���
Activities 3-3.1, 3-3.2, 3-3.4 
(not 3-3.3), 3-4.1, 3-4.2.	


•  (Old) Lecture on VideoNote	
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Next Week	


[xkcd.com]	




Office Hours this Semester	
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classroom	


Office Hours	

Tue & Thu	


10-11	




Variables and Types	


•  Python is a dynamically typed language	

§ Variables can hold values of any type	

§  Type of value in variable can change over time	


•  The following is acceptable in Python:	

>>> x = 1   	

>>> x = x / 2.0 	


•  Alternative is a statically typed language	

§  Each variable restricted to values of just one type	

§  Java is an example of such a language	
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ç x contains an int value   	

ç x contains a float value (why?)   	




Dynamic Typing	


•  Often want to track the type in a variable	

§ What is the result of evaluating x / y?	

§ Depends on whether x, y are int or float values	


•  Use expression type(<expression>) to get type	

§  type(2) evaluates to <type 'int'>
§  type(x) evaluates to type of contents of x

•  Can use in a boolean expression to test type	

§  type("abc") == str evaluates to True	
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Eliminating Variables	


•  Sometimes want to get rid of a variable	

§ Not for performance; not a focus in Python	

§ Do it to make code cleaner/safer	

§  If refer to wrong variable, better it not exist (why?)	


•  Command: del <variable>	

§ Variable ceases to exist	

§  Expressions with variable will cause errors	

§ Needs an assignment to exist again	
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Python Shell vs. Modules	


•  The interactive shell	

§  Simple to use	

§  Experience with Lab 1	


•  But very inefficient	

§  One command at a time	

§  What if need 1000+ lines?	


•  Alternative: modules	

§  Files with commands	

§  Write in a special editor	


•  Run module with import
§  Loads the file into Python	

§  Executes each line	




Using a Module	


Module Contents	


# module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x
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Single line comment	

(not executed)	


Docstring (note the Triple Quotes)	

Acts as a multiple-line comment	

Useful for code documentation	


Commands	

executed on import	


Not a command	

Does nothing	




Using a Module	


Module Contents	


# module.py

""" This is a simple module.
It shows how modules work"""

x = 1+2
x = 3*x
x

Python Shell	


>>> import module
>>> 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>> 
9
>>>
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x

module.x

help(module)	


“Module data” must be 
prefixed by module name	


Prints docstring and 
module contents	




Function Calls	


•  Python supports expressions with math-like functions	

§  A function in an expression is a function call	

§  Will explain the meaning of this later	


•  Function expressions have the form fun(x,y,…)	


	

•  Simplest example of functions are in module math

>>> import math
>>> math.sin(math.pi)
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function ���
name	


argument	


module variable	


module function	




Built-In Functions	


•  You have seen many functions already	

§  Type casting functions: int(), float(), bool()
§ Dynamically type an expression: type()
§ Help function: help()

•  Getting user input: raw_input()
• print <string> is not a function call	


§  It is simply a statement (like assignment)	

§ However, it is a function call in Python 3.x	

§  Python 3.x: print(<string>)
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Using the from Keyword	


>>> import math
>>> math.pi
3.141592653589793
>>> from math import pi
>>> pi
3.141592653589793
>>> from math import *
>>> cos(pi)
-1.0
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Must prefix with 
module name	


No prefix needed 
for variable pi	


No prefix needed ���
for anything in math

•  Be careful using from!	

•  Modules are namespaces	


§  There is only one variable or 
function for each name	


§  Other modules may reuse 
names for variable/function	


§  Prefix keeps them distinct	


•  Example: badpi.py



How Well Are You Following?	


Module Contents	


# data.py

""" Module with two variables """

x = 4
y = 3

Python Shell	


>>> x = 1
>>> y = 2
>>> from data import x
>>> x+y
???
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A: 3	

B: 7	

C: 6	

D: 4	

E: I do not know	


CORRECT	




How Well Are You Following?	


Module Contents	


# data.py

""" Module with two variables """

x = 4
y = 3

Python Shell	


>>> from data import *
>>> x = 3
>>> from data import x
>>> x+y
???
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A: 6	

B: 7	

C: Error!	

D: I do not know	


Importing a variable 
“clobbers” any existing 
variable of same name	


CORRECT	




Python Comes with Many Modules	


•  io
§  Read/write from files	


•  math
§  Mathematical functions	


•  random
§  Generate random numbers	

§  Can pick any distribution	


•  string
§  Useful string functions	


•  sys
§  Information about your OS	


•  Complete list:	

•  http://docs.python.org/library	

•  Library: built-in modules	


§  May change each release	

§  Why version #s are an issue	


•  Documentation is the API	

§  Application	

§  Programming 	

§  Interface	


•  Interface: specification of the 
functions and data in a module	
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Reading the Python API	
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Function name	


Number of arguments	


What the function evaluates to	




The Komodo Editor	
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Current working 
directory	


Tabs for open 
module files	


Execution output 
when module is “run”	


Current active module	


Line numbers	


See website for 	

how to add button	




Lab Next Week	


•  Working with modules	

§  Importing and accessing functions	

§ Writing your own modules	


•  Working with the Python API	

§  Reading function specifications	

§ Using them properly	


•  Getting us ready for the first assignment	

§ Missing: how to make your own functions	
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