
Expressions, Types &
Variables	

Lecture 2	

Announcements for Today	

If Not Done Already	

•  Enroll in Piazza	

•  Sign into CMS	

§  Fill out the Survey	

§  Complete Quiz 0	

•  Read the textbook	

§  Chapter 1 (browse)	

§  Chapter 2 (in detail)	

Lab 1	

8/28/12	
 Expressions, Types, & Variables	
 2	

•  Getting started with Python	

§  Good time to bring a laptop	

§  Help you install the software	

•  Go to section that you want	

§  Tue: 12:20, 1:25, 2:30, 3:35	

§  Wed: 10:10, 11:15, 12:20,

1:25, 2:30, 3:35, 7:30	

•  Have one week to complete	

§  Fill out questions on handout	

§  Show to TA before next lab	

Fix Your E-Mails (The Following Bounce)	

•  rjc362@cornell.edu	

•  stephen.markham@sjprephawks.org	

•  ahanson@hotchkiss.org	

•  adtumuluri12@gmail.com	

8/28/12	
 Expressions, Types, & Variables	
 3	

iClickers	

•  Have you registered your iclicker?	

•  If not, visit	

§  atcsupport.cit.cornell.edu/pollsrvc/	

•  Instructions on iclickers can be found here:	

§  atc.cit.cornell.edu/course/polling/clickers.cfm	

•  Find these links on the course webpage	

§  Click “Texts” 	

§  Scroll down on the page that opens.	

8/28/12	
 4	
Expressions, Types, & Variables	

Warm-Up: Using Python	

•  How do you plan to use Python?	

A.  I want to work mainly in the ACCEL lab	

B.  I want to use my own Windows computer	

C.  I want to use my own Macintosh computer	

D.  I want to use my own Linux computer	

E.  I will use whatever I can get my hands on	

8/28/12	
 Expressions, Types, & Variables	
 5	

Expressions vs Statements	

Expression	

•  Represents something	

§  Python evaluates it	

§  End result is a value	

•  Examples:	

§  2.3
§  (3+5)/4

Statement	

•  Does something	

§  Python executes it	

§  Need not result in a value	

•  Examples:	

§  print “Hello”
§  import sys

8/28/12	
 Expressions, Types, & Variables	
 6	

Will see later this is not a clear cut separation	

Value	

Complex Expression	

Types 	

•  Type: A set of values and the operations on them.	

§  Examples of operations: +, -, /, * 	

§  The meaning of these depends on the type	

•  Type int:	

§  values: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …	

§  operations: +, –, *, /, **, unary –	

§  Principal: operations on int values must yield an int	

§  Example: 1 / 2 rounds result down to 0	

8/28/12	
 Expressions, Types, & Variables	
 7	

“Whole” numbers w/o decimals	

multiply	
 to power of	

Memorize this definition!	

Write it down several times.	

Type: Set of values and the operations on them	

•  Type floating point (or float):	

§  values: fractions and/or real numbers	

•  If you add a decimal, Python assumes it is a float (e.g. 2.0)	

•  Without a decimal, Python assumes it is an int (e.g. 2)	

§  operations: +, –, *, /, **, unary –	

•  But meaning is different for floats	

•  Example: 1.0/2.0 evaluates to 0.5 	
	

•  Exponent notation is useful for large (or small) floats	

§  -22.51e6 is –22.51 * 106 or –22510000	

§  22.51e–6 is 22.51 * 10–6 or 0.00002251	

§  Must start with an integer: 1e5 is ok, but e5 is not	

8/28/12	
 Expressions, Types, & Variables	
 8	

Representation Error	

•  Python stores floats as binary fractions	

§  Integer mantissa times a power of 2	

§  Example: 12.5 is 10 * 2-3	

•  Impossible to write every number this way exactly	

§  Similar to problem of writing 1/3 with decimals	

§  Python chooses the closest binary fraction it can	

•  This approximation results in representation error	

§  When combined in expressions, the error can get worse	

§  Example: type 0.1 + 0.2 at the prompt >>>	

8/28/12	
 Expressions, Types, & Variables	
 9	

mantissa	
 exponent	

Do not need details	

Just understand ���
“floats are not exact”	

Type: Set of values and the operations on them	

•  Type boolean or bool: 	

§  values: True, False	

§  operations: not, and, or	

•  not b: 	
 True if b is false and False if b is true	

•  b and c: True if both b and c are true; False otherwise	

•  b or c: True if b is true or c is true; False otherwise 	

•  Often come from comparing int or float values	

§  Order comparison: 	
i < j 	
i <= j 	
i >= j 	
i > j	

§  Equality, inequality: 	
i == j 	
i != j	

8/28/12	
 Expressions, Types, & Variables	
 10	

==, not =	

Operator Precedence	

•  What is the difference between the following?	

§  2*(1+3)	

§  2*1 + 3	

•  Operations are performed in a set order	

§  Parentheses make the order explicit	

§ What happens when there are no parentheses?	

•  Operator Precedence: The fixed order Python
processes operators in absence of parentheses	

8/28/12	
 Expressions, Types, & Variables	
 11	

add, then multiply	

multiply, then add	

Precedence of Python Operators	

•  Exponentiation: ** 	

•  Unary operators: + – 	

•  Binary arithmetic: * / %	

•  Binary arithmetic: + –	

•  Comparisons: < > <= >= 	

•  Equality relations: == !=	

•  Logical not	

•  Logical and	

•  Logical or	

•  Precedence goes downwards	

§  Parentheses highest	

§  Logical ops lowest	

•  Same line = same precedence	

§  Read “ties” left to right	

§  Example: 1/2*3 is (1/2)*3	

8/28/12	
 Expressions, Types, & Variables	
 12	

• Section 2.7 in your text	

• See website for more info	

• Major portion of Lab 1	

Casting: Converting Value Types	

•  Basic form: type(value)	

§  float(2) casts value 2 to type float (value now 2.0)	

§  int(2.56) casts value 2.56 to type int (value is now 2)	

•  Narrow to wide: bool ⇒ int ⇒ float	

•  Widening Cast. Python does automatically if needed	

§  Example: 1/2.0 evaluates to 0.5 (casts 1 to float)	

•  Narrowing Cast. Python never does automatically 	

§  Narrowing casts cause information to be lost	

§  Example: float(int(2.56)) evaluates to 2.0	

	

8/28/12	
 Expressions, Types, & Variables	
 13	

Type: Set of values and the operations on them	

•  Type int:	

§  Values: integers 	

§  Ops: +, –, *, /, %, **	

•  Type float:	

§  Values: real numbers	

§  Ops: +, –, *, /, **	

•  Type bool:	

§  Values: True and False	

§  Ops: not, and, or	

•  Type str:	

§  Values: string literals	

•  Double quotes: "abc"
•  Single quotes: 'abc'

§  Ops: + (concatenation)	

8/28/12	
 Expressions, Types, & Variables	
 14	

Will see more types ���
in a few weeks	

Variables (Section 2.1)	

•  A variable is 	

§  a named memory location (box),	

§  a value (in the box)	

•  Examples	

•  Variable names must start with a letter	

§  So 1e2 is a float, but e2 is a variable name	

8/28/12	
 Expressions, Types, & Variables	
 15	

5	
x	
 Variable x, with value 5 (of type int)	

20.1	
area	
 Variable area, w/ value 20.1 (of type float) 	

Variables and Assignment Statements	

•  Variables are created by assignment statements	

§  Create a new variable name and give it a value	

	
x = 3	

•  This is a statement, not an expression	

§  Tells the computer to DO something (not give a value)	

§  Typing it into >>> gets no response (but it is working)	

•  Assignment statements can have expressions in them	

§  These expressions can even have variables in them	

	
x = x + 2	

	

8/28/12	
 Expressions, Types, & Variables	
 16	

the value	

the variable	

the expression	

the variable	

Exercise: Understanding Assignment	

•  Draw variable x on piece of paper:	

•  Step 1: evaluate the expression x + 2	

§  For x, use the value in variable x	

§  Write the expression somewhere on your paper	

•  Step 2: Store the value of the expression in x	

§  Cross off the old value in the box	

§  Write the new value in the box for x	

•  Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.	

8/28/12	
 Expressions, Types, & Variables	
 17	

5	
x	
 7	

A: I did it correctly!	

B: I drew another box named x	

C: I did something else	

D: I did nothing –just watched	
✗	

Exercise: Understanding Assignment	

•  You have this:	

•  Execute this command:	

§  Step 1: Evaluate the expression 3 * x + 1	

§  Step 2: Store its value in x	

•  Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.	

8/28/12	
 Expressions, Types, & Variables	
 18	

5	
x	
 7	

A: I did it correctly!	

B: I drew another box named x	

C: I did something else	

D: I did nothing –just watched	
✗	
 22	
✗	

Exercise: Understanding Assignment	

•  You now have this:	

•  The command:	

§  Step 1: Evaluate the expression 3 * x + 1	

§  Step 2: Store its value in x	

•  This is how you execute an assignment statement	

§  Performing it is called executing the command	

§  Command requires both evaluate AND store to be correct	

§  Important mental model for understanding Python	

	

8/28/12	
 Expressions, Types, & Variables	
 19	

5	
x	
 7	
✗	
 22	
✗	

Exercise: Understanding Assignment	

•  Put another variable y on your paper to get this:	

•  Execute this assignment:	

	
 variable = x / variable	

•  Check to see whether you did the same thing as your

neighbor, discuss it if you did something different.	

	

8/28/12	
 Expressions, Types, & Variables	
 20	

5	
x	
 7	
✗	
 22	
✗	
 3	
variable	
 7	
✗	

A: I did it correctly!	

B: I drew another box called “variable”	

C: I stored the value in the box for x	

D: I forgot about division in int types	

E: I did something else (or nothing)	

Exercise: Understanding Assignment	

•  You now have this:	

•  Execute this assignment:	

	
 varable = x + variable	

•  Check to see whether you did the same thing as your

neighbor, discuss it if you did something different.	

	

8/28/12	
 Expressions, Types, & Variables	
 21	

5	
x	
 7	
✗	
 22	
✗	
 3	
variable	
 7	
✗	

A: I did it correctly!	

B: I stored the value in “variable”	

C: I stored the value in x	

D: I did something else (or nothing)	

29	
varable	

Spelling mistakes in
Python are bad!!	

